PROCEEDINGS

The 1st International Basic Science Conference 2016
TOWARDS THE EXTENDED USE OF BASIC SCIENCE FOR ENHANCING HEALTH, ENVIRONMENT, ENERGY, AND BIOTECHNOLOGY
University of Jember, September 26 - 27, 2016
The 1st International Basic Science Conference 2016

(The 1st IBSC 2016)

“Towards the extended use of basic science for enhancing health, environment, energy and biotechnology”

Editor
Fuad Bahrul Ulum
M. Ziaul Arif
Agung Tjahjo Nugroho
Yudi Aris Sulistiyo
Reviewers

Drs. Sujito, Ph.D
Drs. Yuda Cahyoargo Hariadi, M.Sc., Ph.D
Dr. Rike Oktariani, M.Si.
Purwatiningsih, S.Si, M.Si, Ph.D
Ika Oktavianawati, S.Si, M.Sc
Dwi Indarti, S.Si., M.Si
Yeni Maulidah Muflihah, S.Si, M.Si
Dr. Mohamat Fatekurohman, S.Si., M.Si
Erlia Narulita, S.Pd., M.Si., Ph.D
Preparation and Characterization of Cacao Waste as Cacao Vinegar and Charcoal ... 259
The Effect of Physico-Chemical Properties of Aquatic Sediment to the Distribution of Geochemical Fractions of Heavy Metals in the Sediment ... 262
Increased Concentration of Bioethanol by Rectification Distillation Sieve Tray Type ... 266
Determination of Lead in Cosmetic Samples Using Coated Wire Lead (II) Ion Selective Electrode Based on Pyrophillite ... 270
Pyrolysis Temperature Effect on Volume and Chemical Composition of Liquid Volatile Matter of Durian Shell 273
High Performance Liquid Chromatography of Amino Acids Using Potentiometric Detector With A Tungsten Oxide Electrode ... 276
Rainwater Treatment Using Treated Natural Zeolite and Activated Carbon Filter ... 279
Filtration of Protein in Tempa Wastewater Using Cellulose Acetate Membrane... 282

MATHEMATICS ... 285
Image Encryption Technique Based on Pixel Exchange and XOR Operation ... 286
Fuzzy AHP Method and Internal Business Perspective For Performance Measurement In Determining Strategy SMEs... 289
Application of Fuzzy TOPSIS Method in Scholarship Interview ... 295
The Effect of Inflation, Interest Rate, and Indonesia Composite Index (ICI) to the Performances of Mutual Fund Return and Unit Link with Panel Data Regression Modelling ... 299
Using Logistic Regression to Estimate the Influence of Adolescent Sexual Behavior Factors on Students of Senior High School 1 Sangatta, East Kutai-East Kalimantan ... 303
Application Cluster Analysis on Time Series Modelling with Spatial Correlations for Rainfall Data in Jember Regency ... 307
A Zero Crossing-Virus Evolutionary Genetic Algorithm (VEGA) to Solve Nonlinear Equations .. 311
Analysis of Simultaneous Equation Model (SEM) on Non normally response used the Method of Reduce Rank Vector Generalized Linear Models (RR-VGLM) ... 316
The Rainbow (1,2)-Connection Number of Exponential Graph and It's Lower Bound ... 319
The Construction of Super H-antimagicness of Graph by Uses A Partition Technique with Cancellation Number 321
On The Total r-Dynamic Coloring of Edge Comb Product graph G H r ... 325
On The Metric Dimension with Non-Isolated Resolving Number of Some Exponential Graph ... 328
On Total r-Dynamic Coloring of Several Classes of Graphs and Their Related Operations ... 331
On the Rainbow Vertex Connection Number of Edge Comb of Some Graph ... 340
Handling Outlier In The Two Ways Table By Using Robust Ammi And Robust Factor ... 347
An Epidemic Model of Varicella with Vaccination ... 351

BASIC SCIENCE ... 356
The Correlation Between Perception And Behavior Of River Pollution By Communities Around Brantas Riverbank In Malang ... 357
Isolation and Screening Of Specific Methicillin Resistant-Staphylococcus Aureus Bacteriophage From Hospital Waste At Banyumas ... 360
CO (II) As mediator in phenol destruction using electrochemical oxidation ... 365
Design of System Batch Injection Analysis (BIA) For Monitoring The Production of Alcohol (II) ... 370
Preliminary Study Gold Mineralization Hosted By Metamorphic Rocks In The Southeastern Arm Of Sulawesi, Indonesia ... 375
Effects of Packaging Types on Moisture Content, Microbe Total and Peroxide Value of Instant Ganyong (Canna edulis Kerr) Yellow Rice ... 379
Resistivity Value As Characteristics Of Majapahit Kingdom Era Red Bricks ... 384
Strategy to Increase Contract Farming Satisfaction on Red Chili Farmer with The Hortikultura Lestari Cooperation ... 386

AUTHOR INDEX ... 390
Fuzzy Anp Method And Internal Business Perspective For Performance Measurement In Determining Strategy SMEs

1Yeni Kustiyahningsih, 2Eza Rahmanita, 3Jaka Purnama
1Information System, Faculty of Engineering, Trunojoyo University, Madura, Indonesia
2Informatic Engineering, Faculty of Engineering, Trunojoyo University, Madura, Indonesia
3Industrial Engineering, Department of Engineering, ITATS, Surabaya, Indonesia
e-mail: ykustiyahningsih@trunojoyo.ac.id

INTRODUCTION
SME stands for Small and Medium Enterprises. SMEs are governed by Act No. 20 of 2008 on Micro, Small, and Medium Enterprises. The number of SMEs in Bangkalan Indonesia currently reaches more than 125 thousand units, it is possible and potential as an engine of regional economic growth as well as a reduction of unemployment and poverty aspects Bangkalan Indonesia area. The number of SMEs in Bangkalan Indonesia cause difficulties in determining the cooperative business strategies and factors that affect the progress of SMEs. Therefore it is necessary to measure the performance so that all SMEs to know what factors should be done for the development and progress of the business. In this performance measurement using the method of Fuzzy ANP and Balanced Scorecard Internal business perspective. FANP used for weighting indicators in performance measurement, while the internal business balanced scorecard is determine the classification indicator. Methods used Fuzzy ANP because it is based on the need for a fuzzy logic approach due to the complexity and obscurity, which is inherent in the nature of the concept of competition [1], Fuzzy logic theory [2] stated that some thought the right principles to understand the complexity of the problem. The principle of fuzzy logic in two respects, the first the need to take one's decisions and judgments when the complex problems and not enough information to explain it, the second is a problem that requires people to think, feel and decide. The concept of competition including possible decisions and behavior as well as the future rival of the results of these decisions and behaviors. Innovation measurement is influenced by many factors, including the use of multiple criteria decision making [3] [4], their conflicting criteria [5]. Some studies assume the independence criteria, however, in the real world, most of the criteria are not mutually independent [5]. Mathematical methods for engineering evaluation with data envelopment analysis (DEA) [6], analytic hierarchy process (AHP) [7], fuzzy AHP [8], fuzzy goal programming [9], fuzzy analytic network process (ANP) [10]. All of these methods use the concept of multi-criteria decision making (MCDM) for the evaluation and selection of performance measurement. The performance measurement SME consists of many criteria (Multi Criteria Decision Making / MCDM). In this paper, using a balanced scorecard approach, with the associated advantages in its efforts to translate the organization's mission and strategy into four perspectives: the customer, the community and industry partners; Internal business, learning and growth; business and finance [11] [12]. This research based on one perspective in BSC for performance measurement, namely Internal business. It is Consist of number of new products (NP), Satisfaction of employees (SE), Variation Batik (VB), Raw Material Price Increase, Weather Conditions (WC), Transaction Sales (TS), Production (P), and Total manpower (TM). The assessment criteria weighted by importance level of each questioner different criteria. One method that can be used to measure the weight of the criteria is the fuzzy Analytic Network Process (FANP). This method is used because of its use there is dependence and feedback among each criterion. Results of this research are the weight of each indicator SME for mapping the creative industries Bangkalan Indonesia district and determine a strategy of innovation for the development of SMEs in Bangkalan Indonesia. This paper is divided into five sections. In Section 1, the studied problem is introduced. Section 2 briefly describes the ANP method. In Section 3, fuzzy analytic network process (ANP) calculation for SME is presented and the stages of the proposed model and steps are determined in detail. How the proposed model is used in a real world example is explained in Section 4. In Section 5, conclusions and future research areas are discussed.

LITERATURE REVIEW
a. Analytic network process
The ANP is a generalization of the analytic hierarchy process (AHP) [13]. The level of relations in the ANP allows a mutual relationship complex between the decision levels and attributes. At the ANP approach, replacing the feedback relationship hierarchy (as in AHP) into a network of relationships in which the relationship between the levels is not easily represented as either higher or lower, dominant or subordinate, directly or indirectly [14]. For example, not only the importance of the criteria to determine the importance of alternatives, such as in the hierarchy, but also the importance of alternatives may have an impact on the importance of the criteria [13]. Therefore, the hierarchical structure is not suitable for complex systems. There are many studies in the literature using ANP to solve decision making problems. ANP is used for multi-criteria decision making (MCDM) problems [12]. This research integrates the model of fuzzy MCDM (multi-criteria Decision Making) by combining fuzzy Decision Making Trial and Evaluation Lab Model (DEMATEL), ANP (Analytic Network Process) and Technique for Order Preference by Similarity to Ideal

Mathematics | Fuzzy Anp Method And Internal Business Perspective For Performance Measurement In Determining Strategy SMEs
Solution (TOPSIS). This study aimed to evaluate the supplier in accordance with the specifications of the company, which GSCM (green supply chain management) as a framework to determine KPI (key performance areas) [16]. KPI based on BSC for education [21], the following study her with the same old methods of using the third combination of methods FDMATEL, FANP FTOPSIS for innovation and decision-making of higher education in Taiwan [15] [14]. Used ANP in two of their studies. In the first study, alternative projects for agile manufacturing are evaluated via ANP and logistics and supply chain management analysis is performed in the second. Also in two separate studies performed [17]. ANP is used in the interdependent information system project selection process. Besides, [18] used ANP in quality function deployment process. ANP in R&D project selection problem, modeling the metrics of lean, agile and agile supply chain, analyzing alternatives in reverse logistics for end-of-life computers, respectively [19]. ANP is used by [20] for SWOT analysis and by [1] to determine faulty behavior risks in work systems.

b. Fuzzy Membership Function

Membership Function (MF) or the degree of membership is a curve showing the mapping point of data input into the value of membership. One way that can be used to obtain the membership value is through the approach function. The functions used in this study curve which is essentially a combination of two lines (linear) as shown in Figure 2.1.

![Fig 1. Triangular Fuzzy Number](image)

Fuzzy Membership Function [1]

\[\mu(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } a \leq x \leq b \\ \frac{c-x}{c-b} & \text{if } b \leq x \leq c \\ 1 & \text{if } x > c \end{cases} \]

(1)

c. Fuzzy Analytical Network Process (FANP)

Fuzzy ANP method is applied for an extension of the AHP and ANP by combining the fuzzy set theory. In the ANP Fuzzy, Fuzzy ratio scale used to indicate the relative strength of the factors on which the relevant criteria. The fuzzy decision so that a matrix can be formed. Kahit of alternatives are also presented in the Figures Fuzzy [13]. Based Chang each object of each criterion and sub-criteria to be considered and extend the analysis to obtain a goal executed. This means it is possible to obtain the analysis which can extend the value indicated by the notation as follows [22, 23, 24].

\[M_g = \textbf{M}_g = \begin{pmatrix} M_{1g} & M_{2g} & \cdots & M_{ng} \end{pmatrix} \]

(2)

Set as goal (1,2,3, m), and \(M_{ij} = \text{aji} \quad (j = 1,2,3, m) \) are triangular fuzzy (Triangular Fuzzy Number), after identifying initial assumptions, extend the analysis of Chang can be described with the following stages:

1. Development a pairwise comparison matrix between all the elements / criteria, sub-criteria of the fund each dimension criteria in a hierarchical system based on an assessment of linguistic variables.

2. Change the linguistic variables in the form of fuzzy numbers. Questionnaire data in the form of linguistic variables fuzzy numbers are converted to forms. TFN Chang fuzzy numbers to be seen (the scale of the fundamental interests of Relative ANP) with a different level of importance.

3. Enter the search criteria and the weighting formula contained in steps - steps as follows [25]:

a) Determining the value of synthetic extend (the) associated with the object to i then represented as follows

\[w = \sum_{j=1}^{n} M_{ij} \otimes \left[\sum_{j=1}^{n} M_{ij} \right] \]

(3)

To get this \(M'_{ij} = \sum_{j=1}^{n} M_{ij} \) done adding fuzzy operation of m with particular matrix

\[\sum_{j=1}^{n} M'_{ij} = \left[\sum_{j=1}^{n} L_j, \sum_{j=1}^{n} m_j, \sum_{j=1}^{n} u_j \right] \]

(4)

To get

\[\sum_{j=1}^{n} M'_{ij} = \left[\sum_{j=1}^{n} L_j, \sum_{j=1}^{n} m_j, \sum_{j=1}^{n} u_j \right] \]

(5)

At the end of the first step of the determinant of the inverse vector

\[\left[\sum_{j=1}^{n} M'_{ij} \right]^{-1} = \left[\frac{1}{\sum_{j=1}^{n} m_j}, \frac{1}{\sum_{j=1}^{n} m_j}, \frac{1}{\sum_{j=1}^{n} m_j} \right] \]

(6)

b) Determining the degree of likelihood (degree of possibility) and fuzzy set m2 = (12, m2, u2) ≥ M1 = (L1, M1, U1) is defined as

\[V(m2 \geq M1) = \sup_{x \geq x} \min \{ \mu_1(x), \mu_2(y) \} \]

x and y is the value on the axis of each membership function. Applied to the theory and applications of fuzzy TFN with 3-type of low, medium and upper (l, m, u) and membership functions have been formed with the following equation:

\[V(m \geq m_1) = \text{if } m_2 \geq m_1 \]

(7)

\[V(m \geq m_1) = \text{if } m_1 \geq m_2 \]

(8)

\[V(m \geq m_1) = \text{if } \alpha \geq m_1 \]

(9)

c) Determining the degree of likelihood for Confex fuzzy number is greater than k at Confex fuzzy number for M1 = (i = 1,2,k) can be defined as:

\[V = \text{if } M2 \geq M1, m2, \ldots, Mk \]

\[= V[M \geq M1] \]

V = min (M ≥ M1) It is assumed that \(d = \min V(Si \geq Sk) \) for k = 1,2, ..., n k ≠ i then the weight vector used
$W^* = (d'(A_1), d'(A_2), d'(A_3), ..., d'(A_n))^T$

Where A_i (i = 1, 2, 3, ..., n) is an element n

4. Through normalization, weighting vector normalization

$W^* = (d(A_1), d(A_2), ..., d(A_n))^T$

Where we are nonfuzzy numbers.

5. Determination of global sub-criteria weights matrix by multiplying matrix interdependence with WT2 (weighted sub-criteria)

6. Measurement of sub-criteria using linguistic variables by multiplying the weight of global (global weight) with a value scale (scale value) each sub-criteria.

7. Consistency test is done by looking at the value of l, m and u. Value $l \leq m \leq u$ shows fuzzy consistent ratings. Fuzzy comparison matrix that consists of two dimensions, consistency index are always consistent

d. Balanced Scorecard

Balanced Scorecard is a management tool that consists of a series measurements that can provide a quick but thorough overview of the organization’s performance in terms of both financial and non-financial [26]. The Balanced Scorecard is a set performance and approach to performance measurement that stresses meeting all the organization’s objectives relating to its critical success factors. Framework of the balanced scorecard is divided into four perspectives: customer, internal business, learning and growth, financial. (Figure 2.3.) as follows [11,12].

- Customer perspective
 “To achieve the vision, how to explain to the customer?”

- Financial perspective
 “To succeed in the financial perspective, how transparent to customers and industry partners?”

- Internal business process
 “In order to achieve customer satisfaction, what business processes need to find?”

- Learning and growth perspective
 “To achieve the vision, how will the organization supports the ability to change and improvement?”

RESEARCH METHODS

This section discusses: the description of the system, needs analysis, analysis of input, output analysis, system design, and structure of the table that will be used to build a decision support system using the method FANP.

a. Description System

This system provides an assessment of the feasibility of priority based on weight, rank, and value using methods FANP. The system contained three questionnaires, namely the interest scale questionnaires and questionnaires linkages between the criteria required by the owners of SMEs and Cooperatives and SMEs Bangkalan Indonesia whereas risk assessment questionnaire standards set by the Department of Cooperatives and SMEs Bangkalan Indonesia. Then the results of the questionnaire will be processed to determine the criteria that affect the measurement of performance of SMEs.

b. Analysis of needs

In the process of designing the support system assessment decision SME performance is required among other things that the Hardware (Hardware), Software (Software), Data (data used is data questionnaire distributed to some SMEs in Bangkalan Indonesia), Score questionnaire, determine weights.

Criteria to be searched Weighs:
- The number of new products (NP)
- The satisfaction of employees (SE)
- Variation Batik (VB)
- Raw Material Price Increase (MP)
- Weather Conditions (WC)
- Transaction Sales (TS)
- Production (P)
- Total manpower (TM)
- Quality batik Cloth (QB)
- Process of making batik (MB)

The structure of ANP (Analytic Network Process) on SMEs 1, For the structure of the ANP (Analytic Network Process) on SMEs 1 can be seen in Figure 3.1.

c. Output analysis

In making this software in getting the following output:
1. Information database list of criteria in SMEs.
2. Weighting FANP dynamically through a method in which small business owners can switch the input comparison between consistent criteria.
3. Linkage criteria dynamically through FANP method in which SMEs can change the input linkages between criteria.
4. The final result in the form of priority criteria of the highest score to lowest.

d. Design

The purpose of this system design is to model the user needs based on analysis of system requirements. System design approach used in this study Flowchart, use case and activity diagrams and so forth. To flowchart can be seen in the picture 3.2. below

Fig 4. Balanced Scorecard Criteria’s with Internal Business
RESULTS AND DISCUSSION

a. Calculating Weight and Ranking

FANP calculation method. The initial step is to determine the weighting of each criterion alternatives through questionnaires owner. The rules and questionnaires pairwise comparisons interests of owners of SMEs who serves as an expert is as follows at Table 4.1. Level of importance ratings each alternative on criteria

Table 2. Level of importance ratings

<table>
<thead>
<tr>
<th>Level of importance</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>equally important</td>
</tr>
<tr>
<td>3</td>
<td>A little more important</td>
</tr>
<tr>
<td>5</td>
<td>More important</td>
</tr>
<tr>
<td>7</td>
<td>Very important</td>
</tr>
<tr>
<td>9</td>
<td>The most important</td>
</tr>
</tbody>
</table>

The following steps Weighting Calculation of SMEs:
1. Pairwise Comparison specify criteria as shown in Table 4.2.

Table 3. Pairwise comparison

<table>
<thead>
<tr>
<th>Criteria</th>
<th>NP</th>
<th>SE</th>
<th>WC</th>
<th>MP</th>
<th>VB</th>
<th>TS</th>
<th>P</th>
<th>TM</th>
<th>QB</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>QB</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MB</td>
<td>5</td>
</tr>
</tbody>
</table>

2. Determining Triangular Fuzzy Number to obtain the value of Lower (L), Middle (M), and Upper (U).
3. Synthetic Extend determine the value of L, M, and U (Value of Si Based on Equation 3) as in table 4.3

Table 4. Value Synthetic Extend L, M and N

<table>
<thead>
<tr>
<th>Criteria</th>
<th>L</th>
<th>M</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>0.041</td>
<td>0.103</td>
<td>0.244</td>
</tr>
<tr>
<td>SE</td>
<td>0.014</td>
<td>0.046</td>
<td>0.126</td>
</tr>
<tr>
<td>WC</td>
<td>0.021</td>
<td>0.064</td>
<td>0.165</td>
</tr>
<tr>
<td>MP</td>
<td>0.096</td>
<td>0.202</td>
<td>0.435</td>
</tr>
<tr>
<td>VB</td>
<td>0.052</td>
<td>0.149</td>
<td>0.366</td>
</tr>
<tr>
<td>TS</td>
<td>0.029</td>
<td>0.076</td>
<td>0.190</td>
</tr>
<tr>
<td>P</td>
<td>0.071</td>
<td>0.155</td>
<td>0.343</td>
</tr>
<tr>
<td>TM</td>
<td>0.016</td>
<td>0.028</td>
<td>0.081</td>
</tr>
<tr>
<td>QB</td>
<td>0.016</td>
<td>0.027</td>
<td>0.075</td>
</tr>
<tr>
<td>MB</td>
<td>0.067</td>
<td>0.152</td>
<td>0.343</td>
</tr>
</tbody>
</table>

4. Possible values calculate the degree of Synthetic Extend Accordance Equation (6)
5. Specifies the minimum value of the degree of likelihood according Equation (7)
6. Determining Weight Vectors
7. Determining the normalization Weight Vector
8. Determining the relationship between the criteria to each other, if the value is 1 then there is a link, while a value of 0 then there is no linkage
9. If there is a link between the criteria with each other then multiplied by the questionnaire scale of interest
10. Normalization linkage, Between the weight vector matrix multiplication normalized
11. Results weights

Table 5. weighting criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>0.119</td>
</tr>
<tr>
<td>SE</td>
<td>0.033</td>
</tr>
<tr>
<td>WC</td>
<td>0.066</td>
</tr>
<tr>
<td>MP</td>
<td>0.062</td>
</tr>
<tr>
<td>VB</td>
<td>0.133</td>
</tr>
<tr>
<td>TS</td>
<td>0.085</td>
</tr>
<tr>
<td>P</td>
<td>0.301</td>
</tr>
<tr>
<td>TM</td>
<td>0.023</td>
</tr>
<tr>
<td>QB</td>
<td>0.071</td>
</tr>
<tr>
<td>MB</td>
<td>0.107</td>
</tr>
</tbody>
</table>

Based on Figure 4.3. shown that the weighting criteria that most affect the determination of the SME strategy is a new product and the variations of batik. This is because it has the weight of the highest among other criteria, namely 0.133 and 0.119

b. Sensitivity Analysis

Sensitivity testing is a test for measuring the change in the value of ranking priorities if the weights do value the combination means the value of sensitivity to change the ranking criteria. Performance of SMEs are flexible if priority is modified. Each criterion was changed value of its weight in order to see changes that occur. Combination of sensitivity test weights can be seen on the table 4.4. The table shows that the blue box as the weight of the highest criteria of each combination weights.

There were five SMEs will be in the trial, based on analysis of test sensitivity in Table 4.4. It can be seen that if the weight criterion highest on variations of batik SMEs 2 has the best-performing high, if Weather Conditions (WC) has the most weight higher performing is SMEs 4, whereas if the weight of the fabric quality SMEs palim steeper 5, which has a top ranking
themselves. So based on this information it can be given the results of the SME strategy is based on the level of performance.

Table 6. Combination weight sensitivities tes

<table>
<thead>
<tr>
<th>Weight</th>
<th>WP</th>
<th>SB</th>
<th>WC</th>
<th>MP</th>
<th>VB</th>
<th>TS</th>
<th>P</th>
<th>TM</th>
<th>QB</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.12</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.0</td>
</tr>
<tr>
<td>II</td>
<td>0.03</td>
<td>0.07</td>
<td>0.06</td>
<td>0.09</td>
<td>0.13</td>
<td>0.05</td>
<td>0.02</td>
<td>0.07</td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td>III</td>
<td>0.07</td>
<td>0.06</td>
<td>0.13</td>
<td>0.09</td>
<td>0.13</td>
<td>0.11</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td>IV</td>
<td>0.06</td>
<td>0.15</td>
<td>0.09</td>
<td>0.3</td>
<td>0.02</td>
<td>0.01</td>
<td>0.11</td>
<td>0.12</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>V</td>
<td>0.15</td>
<td>0.09</td>
<td>0.13</td>
<td>0.08</td>
<td>0.11</td>
<td>0.12</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>VI</td>
<td>0.07</td>
<td>0.13</td>
<td>0.02</td>
<td>0.07</td>
<td>0.11</td>
<td>0.12</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>VII</td>
<td>0.06</td>
<td>0.02</td>
<td>0.05</td>
<td>0.11</td>
<td>0.12</td>
<td>0.05</td>
<td>0.07</td>
<td>0.12</td>
<td>0.09</td>
<td>0.13</td>
</tr>
<tr>
<td>VIII</td>
<td>0.01</td>
<td>0.11</td>
<td>0.12</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.13</td>
<td>0.09</td>
<td>0.30</td>
<td>0.02</td>
</tr>
<tr>
<td>IX</td>
<td>0.11</td>
<td>0.12</td>
<td>0.03</td>
<td>0.07</td>
<td>0.06</td>
<td>0.13</td>
<td>0.09</td>
<td>0.30</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Fig 6. Menu form “Entry Data User”

CONCLUSIONS AND FUTURE RESEARCH

Based on this study it can be concluded that the measurement of the performance of SMEs using the method FANP produce better weight, because in this method there assessment criteria based on the level of interest and the current ratio it should be less than 10% and by using fuzzy hence the decision to have a consensus that high, because any individual can assign a value to each criterion. From the test results on the performance appraisal scale SMEs with different interests and also the relationship between the different criteria that performance appraisal obtained from a scale of high importance and there are many linkages between criteria. Factors affecting the highest risk in that on a of high importance and there are many linkages between criteria.

REFERENCES

Drs. Moh. Hasein M.S.C. Ph.D.

Anggun Trihato Nugroho, S.Si. M.Phil II, Ph.D.

Chairman of Organizing Committee

Rektor

University of Jember, September 26 - 27, 2016

ENERGY AND BIOTECHNOLOGY
FOR ENHANCING HEALTH, ENVIRONMENT
TOWARDS THE EXTENDED USE OF BASIC SCIENCE

In The 1st International Basic Science Conference 2016

PAPER PRESENTER

Yeini Kustiyahningish

has participated as a given to

CERTIFICATE