Search

Series: Advances in Intelligent Systems Research

Proceedings of the 2019 1st International Conference on Engineering and Management in Industrial System (ICOEMIS 2019)

HOME

Welcome to the 1st International Conference on Engineering and Management In Industrial System (ICOEMIS 2019), held on 8-9 August 2019, Atria Hotel, Malang, Indonesia.

The objective of ICOEMIS 2019 is to provide a platform for researchers, engineers, academicians as well as industry professionals from all over the world to present their ideas, research results, and development activities in industrial (both of manufacture & service) management. Following the challenges of the current industrial management, the ICOEMIS 2019 topic areas mainly focus on the Open Innovation Application on Service and Manufacturing Industry.

Please click here for the conference website.

Atlantis Press

Atlantis Press is a professional publisher of scientific, technical and medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

PROCEEDINGS

- JUUKNALS
- ▶ BOOKS
- PUBLISHING SERVICES

CONTACTSEARCH

.....

▶ NEWS

Home Privacy Policy Terms of use

.....

Copyright © 2006-2019 Atlantis Press

Search

Series: Advances in Intelligent Systems Research

Proceedings of the 2019 1st International Conference on Engineering and Management in Industrial System (ICOEMIS 2019)

AUTHORS

213 authors

Adani, Jauharah Hasna Dzakiyyah

An Effective Scheme of a Depth Sensor Set Up for a Real-Time Ergonomics Assessment by the Gesture Confidence Level

Aeni, Nur

The Impact Of Motivation, Work Satisfaction And Compensation On Employee's ProductivityIn Coal Companies

Agripina, Hadyanawati

Farmer's Work Posture Analysis Affected Musculoskeletal Disorders

Aisha, Atya

Mental Workload Evaluation of Machining Tool Operators in Manufacturing SMEs

Aisha, Atya

Comparison of Job Evaluation Methods: Implications for the Salaries Design in Publishing Company

Aisyah, Siti

Quality Development Of Bar Chocolate Products Based On Consumer Preferences: Case Study On SMEs

Aisyah, Siti

Identification Of Lean, Agile, Resilient, And Green (Larg) Practices On Agro Industry Indonesia

Aisyah, Siti

Performance Improvement Of Injection Pump Machines Based On Overall Equipment Effectiveness: Case Study In Oil Company

Alimudin, Darso

Performance Improvement Of Injection Pump Machines Based On Overall Equipment

Effectiveness: Case Study In Oil Company

Amrullah, Haidar Natsir

Human Error Probability of Grinding Operation in Fabrication and Construction Company Using Fuzzy HEART Method

Amrullah, Haidar Natsir

Assessment Of Worker Posture In Herbicides Production And Break Time Determination Using OCRA Index Method

Andriono, Djoko

Solving Office Ergonomics Problem Using Rapid Upper Limb Assessment (RULA)

Anggraeni KK, Ika

Redesigning Customer Satisfaction Measurement Instrument Using Multi-Criteria Decision Making Perspective

Anna, Ika

Effect Ratio of Milkfish Payus with Tapioca Flour and Proportion of Water to Organoleptic, Physical and Chemical Characteristics of Fish Crackers

Annisa, Rulli

Effect Ratio of Milkfish Payus with Tapioca Flour and Proportion of Water to Organoleptic, Physical and Chemical Characteristics of Fish Crackers

Anugraha, Rino Andias

An Effective Scheme of a Depth Sensor Set Up for a Real-Time Ergonomics Assessment by the Gesture Confidence Level

Anugraha, Rino

Optimizing Milling Process Parameters of Bovine Horns forMaximizing Surface Quality and Minimizing Power Consumption

Anugraha, Rino

Enhancing Thermal-Shock Reliability of a Sleeveless Power Inductor Assembly upon Reflow Soldering

Ariati, Ratna

Planning of Green & Smart Campus Design in Jakarta with Case Study of Early Energy Audit at UNSADA Faculty of Economics Building

Ariefiani, Mila

Human Error Probability of Grinding Operation in Fabrication and Construction Company Using Fuzzy HEART Method

Arsyifa, Yasmine

Analysis of Simulation in Supply Chain Management Based on System Dynamics and SCOR

Model (a Case Study : Newspaper Industry)

Arvitrida, Niniet Indah

Simulation Study of Collaborative Inventory Management for Seasonal Products by Incorporating Newsvendor and Buyback Contract

Ashari, Luqman

Human Error Probability of Grinding Operation in Fabrication and Construction Company Using Fuzzy HEART Method

Asrianti, Tifa

Planning of Green & Smart Campus Design in Jakarta with Case Study of Early Energy Audit at UNSADA Faculty of Economics Building

Astuti, Amalia

Identifying Waste Cooking Oil Chains to Become an Energy Resource: Study Case in Yogyakarta

Awibowo, S. IoT Integrated Assembly Line - a conceptual model development for car toys assembly line

Awibowo, S.

Development of Information Support System (ISS) Application for Organization Performance Improvement: Case in Tyre Manufacturer and Air Transport Company

Azzahra, Nabila

Designing Classification Models of Patron Visits to an Academic Library using Decision Tree

Baruna, I Made Setia

Worker Ergonomics Surveillance in Industrial Environments Based on Parallel Computing on Face Camera Using OpenCV and CUDA

Basuki, Ari

Resilience Measurement of SMEs Batik Sampang in Dealing with Natural Disasters

Chen, Yuh-Wen

Building a Predictive Model to Estimate NOx Emission Pollutant of Backhoe Equipment

Cholissodin, Imam

Worker Ergonomics Surveillance in Industrial Environments Based on Parallel Computing on Face Camera Using OpenCV and CUDA

Chumaidiyah, Endang

Marketing Strategy Analysis of Arca Industry as Furniture Business Using the QSPM Method

Dalulia, Primahasmi

Redesigning Customer Satisfaction Measurement Instrument Using Multi-Criteria Decision Making Perspective

Darmawan, veruc

Building a Predictive Model to Estimate NOx Emission Pollutant of Backhoe Equipment

Dewanti, Astri Putri

Standard of Green Industry with Green Industry in Go Public Cement Industry

Dewi, Sri Murni

The Effect of Pile Reinforcement To Bearing Capacity On Design Physical Modelling Of Residual Slope

Dewi, Medianti Arifia

Investigating Student Intention to support the Green Laboratory Program Using the Proenvironmental Reasoned Action Model: A case study from Bandung, Indonesia

Dhadhari, Cahyaning Wulan

Assessment Of Worker Posture In Herbicides Production And Break Time Determination Using OCRA Index Method

Dwi Pambudi, Erwin

Redesigning Customer Satisfaction Measurement Instrument Using Multi-Criteria Decision Making Perspective

Eka, Apsari

Farmer's Work Posture Analysis Affected Musculoskeletal Disorders

Ekhsan, Muhamad

The Impact Of Motivation, Work Satisfaction And Compensation On Employee's ProductivityIn Coal Companies

Erliana, Ken

Solving Office Ergonomics Problem Using Rapid Upper Limb Assessment (RULA)

Erliana, Ken

The Work Posture Evaluation at Assembly Work Station in MSEs of Silver Jewelry Handicraft with the REBA Method

Eunike, Agustina

Minimizing Corrective Maintenance Cost through Spare Parts Classification and Inventory Control

Fahlevi, Mochammad

The Impact Of Motivation, Work Satisfaction And Compensation On Employee's ProductivityIn Coal Companies

Fajar P, Aang

Redesigning Customer Satisfaction Measurement Instrument Using Multi-Criteria Decision Making Perspective

Fajrina, Fildzah

Enhancing Thermal-Shock Reliability of a Sleeveless Power Inductor Assembly upon Rel

Soldering

Farhan, Muhammad Designing Classification Models of Patron Visits to an Academic Library using Decision Tree

Fauziah, Rantri Decision Making Support in Developing Entrepreneurship Tenants of Uai Incubator Bussiness

Febriyanti, Erna

Parameter Optimization of Tray Dryer Machine Endless Chain Pressure (ECP) with Taguchi Method at PT PN VIII Purwakarta

Fillie, Sahr

Simulation Study of Collaborative Inventory Management for Seasonal Products by Incorporating Newsvendor and Buyback Contract

Firdiansyah, Rizal Solving Office Ergonomics Problem Using Rapid Upper Limb Assessment (RULA)

Hajji, Apif Miftahul Designing Classification Models of Patron Visits to an Academic Library using Decision Tree

Hajji, Apif

Building a Predictive Model to Estimate NOx Emission Pollutant of Backhoe Equipment

Hamzah, Fais

Human Error Probability of Grinding Operation in Fabrication and Construction Company Using Fuzzy HEART Method

Handayani, Anik Nur

Designing Classification Models of Patron Visits to an Academic Library using Decision Tree

Handayani, Nurlaila

Identification of Risk Event of Mushroom Supply Chain in Langsa City by SCOR Method

Handayani, Nurlaila

Choosing Alternative Managements of Solid Waste from Tofu Producing Small and Medium Enterprises in East Aceh District by Analytical Hierarchy Process (AHP)

Handayani, Dwi

Application of Grey Teory Method for Halal Food Risk Assessment Based on the Traceability System in Food Supply Chain

Handayani, Henny Spatial Planning of Renewable Energy-Based Minapolitan Region

Handoko, Lukman

Human Error Probability of Grinding Operation in Fabrication and Construction Company

Using Fuzzy HEART Method

Hanggara, Fuad Dwi

Development Of Business Strategy Through Blue Ocean Strategy Model (BOS) (Case Study: Resto X, Batam)

Hardiningtyas, Dewi

Worker Ergonomics Surveillance in Industrial Environments Based on Parallel Computing on Face Camera Using OpenCV and CUDA

Hari, Purnomo Farmer's Work Posture Analysis Affected Musculoskeletal Disorders

Hariyanto, Samsudin Solving Office Ergonomics Problem Using Rapid Upper Limb Assessment (RULA)

Hariyanto, Samsudin

The Work Posture Evaluation at Assembly Work Station in MSEs of Silver Jewelry Handicraft with the REBA Method

Hartono, R

Implementation Concept of Industry 4.0 to Manufacturing Industry in Indonesia in Order to Optimize Supply Chain Management

Haryono

Application of Grey Teory Method for Halal Food Risk Assessment Based on the Traceability System in Food Supply Chain

Heryanto, Rainisa

Determination of Distribution Route using Linear Programming Model (Case Study at Washing Jeans Company)

Ikasari, Niura

Supply Chain Performance Measurement using Hybrid SCOR Model and System Dynamics

Imami, Amrullah Paksi

Design Of Rolled Conveyor Using Rational Product Development Method

Iqbal, Muhammad

Investigating Student Intention to support the Green Laboratory Program Using the Proenvironmental Reasoned Action Model: A case study from Bandung, Indonesia

Iqbal, Muhammad

An Effective Scheme of a Depth Sensor Set Up for a Real-Time Ergonomics Assessment by the Gesture Confidence Level

Iqbal, Muhammad

Optimizing Milling Process Parameters of Bovine Horns forMaximizing Surface Quality and Minimizing Power Consumption

Irwan, Muhammad

Marketing Strategy Analysis of Arca Industry as Furniture Business Using the QSPM Me

Ishak, Aulia

Design Of Electronic Supply Chain Management Information System In PT XYZ

Ishak, Aulia

Rubber Spare Parts Supplier Selection Model Using Artificial Neural Network: Multi-Layer Perceptron

Ishak, Aulia

Supplier Selection Using Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

Izzuddin, Ahmad

Defects Tracking Matrix for Plywood Industry Production based on House of Quality

Jaqin, Choesnul

Quality Development Of Bar Chocolate Products Based On Consumer Preferences: Case Study On SMEs

Jaqin, Choesnul

Identification Of Lean, Agile, Resilient, And Green (Larg) Practices On Agro Industry Indonesia

Jaqin, Choesnul

Performance Improvement Of Injection Pump Machines Based On Overall Equipment Effectiveness: Case Study In Oil Company

Jatmiko, Hapsoro Agung

Wheelchair's Design Development for Disabled People in Yogyakarta, Using Quality Function Deployment Method

Jufriyanto, Moh.

Standard of Green Industry with Green Industry in Go Public Cement Industry

Juliani, Widia

Application of Six Sigma Method with DMAI Approach in Railway Manufacturing Company

Kartikasari, Vetty

Redesigning Customer Satisfaction Measurement Instrument Using Multi-Criteria Decision Making Perspective

Kautsar, Fuad

Solving Office Ergonomics Problem Using Rapid Upper Limb Assessment (RULA)

Krismodianto

Route Determination Method to Minimize Distribution Cost and Total Time Balance by Using Multi-Objective Genetic Algorithm

Krismodianto

Route Determination Method to Minimize Distribution Cost and Total Time Balance by U Multi-Objective Genetic Algorithm

Kurniawan, I

IoT Integrated Assembly Line - a conceptual model development for car toys assembly line

Kusuma, Artha

Online Travel Agency Channel Pricing Policy based on Dynamic Pricing Model to Maximize Sales Profit Using Nonlinear Integer Programming Approach

Kusuma, L.

Indonesia Sea Toll Strategy Framework Directive: Innovative and Participatory Decision-Making Methods Towards the World Maritime Axis

Larasati, Aisyah

Designing Classification Models of Patron Visits to an Academic Library using Decision Tree

Larasati, Aisyah

Building a Predictive Model to Estimate NOx Emission Pollutant of Backhoe Equipment

Linarti, Utaminingsih

Identifying Waste Cooking Oil Chains to Become an Energy Resource: Study Case in Yogyakarta

Lubis, Marina

Design Improvement At Shearing And Tandem Cold Milling Process Of Full Hard 0,2 X 914 Mm Products In Steel Manufacturing With Six Sigma Method

Mahardika, Aal

Building a Predictive Model to Estimate NOx Emission Pollutant of Backhoe Equipment

Majid, M.

Indonesia Sea Toll Strategy Framework Directive: Innovative and Participatory Decision-Making Methods Towards the World Maritime Axis

Malawat, Dwi Rama

Worker Ergonomics Surveillance in Industrial Environments Based on Parallel Computing on Face Camera Using OpenCV and CUDA

Atlantis Press is a professional publisher of scientific, technical and medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

	PROCEEDINGS	ABOUT
	JOURNALS	NEWS
	BOOKS	CONTACT
	PUBLISHING SERVICES	SEARCH
Ho	ome Privacy Policy Terms of use 📑 🍧 in	

Copyright © 2006-2019 Atlantis Press

Effect Ratio of Milkfish Payus with Tapioca Flour and Proportion of Water to Organoleptic, Physical and Chemical Characteristics of Fish Crackers

Issa Dyah Utami^{1,a}, Iwan Santosa^{2,b}, Rulli Annisa¹, Endah Retnaningsih¹, Ika Deefi Anna¹

> ¹Department of Industrial Engineering, University of Trunojoyo Madura ²Department of Informatic, University of Trunojoyo Madura JI. Raya Telang, Kecamatan Kamal, Bangkalan, Madura 69162 Indonesia ^ai.d.utami@trunojoyo.ac.id, ^biwan@trunojoyo.ac.id

Keywords: Experimental Design, fish cracker, water proportion, organoleptic, physical and chemical characteristics

Abstract. SMEs producing fish crackers in Socah, Bangkalan do not have a composition standard for Milkfish Payus and the water proportion. Thus product quality cannot be maintained. Oftentimes, the fish crackers have darker color and harder texture. This research aims to determine the effect of ratio of Milkfish Payus with tapioca flour composition and the proportion of water to organoleptic, physical, and chemical characteristics of the fish crackers. The research design used in this research was a 2x2 factorial design. The data collection technique used in this research was laboratory observation and testing. Observations were done with a questionnaire using a Likert scale, including organoleptic tests (color, aroma, taste) and physical tests (crispness, blooming). The respondents of the research were 30 respondents. The data analysis technique used was the Chi-Square test with SPSS using a significance level below 5% (lower than 0.05). Result of the experiment indicated that ratio of Milkfish Payus fish, tapioca flour, and water have a significant effect on organoleptic properties on the aroma and the physical properties of the crispness and blooming, but have no significant effect on the color and taste of Milkfish Payus fish crackers.

Introduction

Crackers are snacks that contain high starch ingredients. In terms of the shape crackers are divided into two types: crackers that are printed similar to noodles, and crackers which are compacted and slied in the production process [1]. There has been no standard for the ingredient composition crackers. Usually, producers have their own recipes and tastes for cracker products to be produced. Crackers are composed of two ingredients, namely raw materials and additional ingredients. Raw materials are materials whose functions cannot be replaced by other ingredients other than those used in large quantities while additional ingredients are materials used in the production process to supplement the raw materials.

Crackers can be assessed in terms of organoleptic properties (color, taste, aroma), physical properties (crispness), and chemical properties (water content). Organoleptic testing is a test carried out using the five human senses as the main measuring instruments. In organoleptic testing there are three properties that are tested, namely color, aroma, and taste [2]. Color is one of the organoleptic properties used to determine the quality of food ingredients before other factors are considered visually. The color of a food product can be directly observed visually by using the sense of vision. Aroma is one of the organoleptic properties used to assess a food product. The aroma of a food product can be assessed using the sense of smell. Taste as one of the organoleptic properties is used to assess a food product. The taste of a food product can be assessed using a taster or tongue [3].

The physical properties of crackers are the texture of crackers that have been fried. The physical properties of crackers refer to the blooming and agility. Crunchiness is one factor indicating the quality of crackers. Crackers are considered bad if the cracker texture is weak or soft [1]. The

blooming of crackers is an important indicator of the quality. Basically, the blooming of crackers is caused by vapor pressure formed by heating the water content in crackers so that it urges the structure of the material and makes the product blooming. The chemical nature of crackers here is the water content in crackers. The quality standard of water content in fish crackers is maximum 12%. The results of laboratory analysis shows that the water content will decrease after being fried around 1.05% to 5.48% because the water evaporates [1].

SME Sumber Jokotole produces fish crackers in Socah, Bangkalan, Madura. The SME produces shrimp and Milkfish Payus crackers. The Milkfish Payus crackers are the featured product of the SMEs, because the raw material, which is payus, can easily be obtained from the area. However, The SMEs face a problem with regard to the quality of the products. Chemical and organoleptic properties of the fish crakers do not meet the Indonesian National Standard (SNI). Thus, it is difficult for the SMEs to develop and the increase of their monthly sales is not significant. This problem occurs because the composition of fish crackers produced does not have a composition standard of raw materials so that the quality and taste are often different. This often leads to complaints from consumers. The selection of ingredients by the SME Sumber Jokotole is also not carried out optimally and there is a lack of innovation in the selection of flavors in processed fish crackers.

Research on the effect of raw material composition ratios on the physical, organoleptic and chemical properties of crackers have been carried out, such as the ratio of Lele fish to Tapioca [4]. The effect of Proportion of Tapioca and Red Rice Flour on the physical and chemical properties of red rice crackers [5]. The effect of Proportion of Milkfish Payus fish and Shrimp and addition of red bean puree to the Organoleptic Properties of Crackers [6]. The Effect of Flour (Tapioca – Tempe) Proportion and dough processing method on the organoleptic and physical properties of Tempe crackers [2]. However, research to analyse proportion of water have not been done.

This research aims to examine the effect ratio of Milkfish Payus with tapioca flour and its proportion of water on the organoleptic, physical, and chemical properties of Milkfish Payus fish crackers of the SME. Currently, the composition used by the SME in making the dough is as follows: 2.5 kg of Payus Milkfish Payus, 5 kg of tapioca flour, and 5 cups of water (1,200 ml). Due to the lack of proper standard composition of Milkfish Payus crackers, the quality of the products oftentimes varies. For example, the water content is still high, making the cracker not bloom when being fried. From the problem, the researchers propose a new composition to improve the quality of the fish crakers by using the 2x2 factorial design of experiment method [7,8].

Methodology

The ratio of clean Milkfish Payus with tapioca flour used in this research is the actual ratio of production process from the SME, which is 250 gr: 500 gr, hence the proposed ratio is 250 gr: 550 gr). The water used in this research was the actual water portion from the SME, which was 120 ml, and in this research the amount of water was slightly reduced to 110 ml. Table 1 describe the experimental design applied in this research. The data collection methods in this research were observation and laboratory tests. Observation in this research was conducted to observe the quality of fried crackers by organoleptic test and physical test. Meanwhile, laboratory tests were used to measure water content of fried crackers. Organoleptic test and physical test are methods of testing carried out using the five senses of as a measure of acceptance of a product. The tests carried out include five criteria for the assessment of the fried Milkfish payus cracker, which are color, aroma, taste, crispness and blooming by using a questionnaire. The respondents taking the organoleptic and physical tests were 30 students of Agricultural Industrial Technology, University of Trunojoyo. The questionnaire include color, aroma, taste, crispness, and blooming. The data analysis technique used was the Chi-Square test with SPSS using a significance level below 5% (lower than 0.05) [9,10,11].

The criteria for Milkfish Payus crackers can be seen from the following rating scores:

1. Color Criteria

Score 5: Brownish white Score 4: White tends to light brown Score 3: Light Brown Score 2: a bit brown Score 1: Dark brown

2. Aroma Criteria Score 5: Enough flavored fish Score 4: A little scented fish Score 3: Scented fish Score 2: Very flavorful fish Score 1: Not scented with fish

3. Taste Criteria Score of 5: Very tasty and enough to taste fish Score 4: Savory and rather fishy Score 3: Pretty tasty and taste fish Score 2: Less savory and highly flavored fish Score 1: Not tasty and doesn't taste fish

4. Crunch Criteria Score 5: Very crunchy Score 4: Crispy Score 3: Pretty crunchy Score 2: Less crunchy Score 1: Not crispy

5. Blooming Criteria Score 5: Very expands Score 4: Expand Score 3: Enough to expand Score 2: Less expands Score 1: Does not expand

Ratio of Milkfish Payus fish with	Water proportion (A)		
Tapioca flour (B)	120 ml (A ₁)	110 ml (A ₂)	
1:2 (B ₁)	A_1B_1	A_2B_1	
1:2,2 (B ₂)	A_1B_2	A_2B_2	

The factorial design used is $2x^2$, thus the experiment is divided into four product, as follows:

- a. A₁B₁ (Product 1): Proportion of 120 ml water with ratio of clean Milkfish Payus with Tapioca flour is 250 gr: 500 gr or 1:2.
- b. A₂B₁ (Product 2): Proportion of 110 ml water with ratio of clean Milkfish Payus with tapioca flour is 250 gr: 500 gr or 1:2.
- c. A₁B₂ (Product 3): Proportion of 120 ml of water with ratio of clean Milkfish Payus with tapioca flour is 250 gr: 550 gr or 1:2,2.
- d. A₂B₂ (Product 4): Proportion of 110 ml water with ratio of clean Milkfish Payus with tapioca flour is 250 gr: 550 gr or 1:2,2.

Laboratory tests were carried out at the Agricultural Industry Technology Laboratory, Trunojoyo Madura University. Laboratory tests were carried out to determine the chemical properties of the water content contained in Milkfish Payus crackers.

3. Result and Discussion

Table 2 describes the results the organoleptic properties test involving 30 respondents from the Department of Agricultural Industrial Technology, University of Trunojoyo Madura.

Table 2 Descriptive Statistics of Color Criteria						
De						
N Mean Std. Deviation				Minimum	Maximum	
Criteria_Color_Product1	30	4.6	0.498272879	4	6	
Criteria_Color_Product2	30	4.566666667	0.568320777	3	5	
Criteria_Color_Product3	30	4.366666667	0.718395402	3	5	
Criteria_Color_Product4	30	4.5	0.62972353	3	5	

Table 2 Descriptive Statistics of Color Criteria

The expected color of Milkfish Payus fish crackers is brownish white. Based on the organoleptic test in Table 2, and Figure 1 it can be seen that the lowest mean value of 4.37 is product 3 with a ratio of Milkfish Payus fish with tapioca flour (1: 2.2) and the addition of water as much as 120 ml, obtained by the color of light brown Milkfish Payus cracker. Meanwhile the highest mean value of 4.6 is product 1 with a ratio of Milkfish Payus fish with tapioca flour (1: 2) and the addition of water as much as 120 ml, obtained by the results of the color of the white Milkfish payus cracker color rather light brown. The Chi-Square test of the color criteria is the value of Asymp. Sig 0.273 (more than 0.05). Therefore, the hypothesis is rejected, which means that the ratio of Milkfish Payus fish with tapioca flour and the addition of water does not significantly influence the color of Milkfish Payus fish crackers.

Fig. 1 Ratio of mean value of color criteria

able 3 Descriptive Statistics of Aroma Criteria

Descr					
	N Mean Std. Deviation		Minimum	Maximum	
Criteria_Aroma_Product1	30	3.466666667	1.613164235	1	5
Criteria_Aroma_Product2	30	3.133333333	1.676065453	1	5
Criteria_Aroma_Product3	30	2.533333333	1.455864084	1	5
Criteria_Aroma_Product4	30	2.7	1.643167673	1	5

The expected aroma of Milkfish Payus fish crackers is quite flavourful with fish. Based on the organoleptic test in Table 3 and Figure 2, it can be seen that the lowest mean value of 2.533 is product 3 with a ratio of Milkfish Payus fish with tapioca flour (1: 2.2) and the addition of 120 ml of water, the scent of fish-flavoured payus scent crackers is obtained. The highest mean value of 3,466 is product 1 with a ratio of Milkfish Payus fish with tapioca flour (1: 2) and the addition of water as much as 120 ml, obtained by the results of the aroma of Milkfish payus cracker is quite flavourful with fish. The Chi-Square test of the aroma criteria was the value of Asymp. Sig 0.035 (less than 0.05). So the hypothesis is accepted, which means that the ratio of Milkfish Payus fish with tapioca flour and the addition of water has a significant effect on the aroma of Milkfish Payus fish crackers.

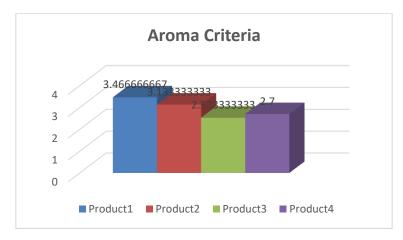


Fig. 2 Ratio of mean value of aroma criteria

De	scriptive S	Statistics			
	N Mean Std.		Minimum	Maximum	
			Deviation		Maximum
Criteria_taste_Product1	30	3.533333333	1.252124631	1	5
Criteria_taste_Product2	30	3.166666667	1.234094205	1	5
Criteria_taste_Product3	30	2.333333333	1.321789105	1	5
Criteria_taste_Product4	30	3.433333333	1.250746903	1	5

 Table 4 Descriptive Statistics of Taste Criteria

The expected taste of the Milkfish payus crackers is very tasty and quite flavorful with fish. Based on the organoleptic test in Table 4 and Figure 3, it can be seen that the lowest mean value of 2,333 is product 3 with the ratio of Milkfish Payus fish with tapioca flour (1: 2,2) and the addition of water as much as 120 ml. Meanwhile the highest mean value of 3,533 is product 1 with a ratio of Milkfish Payus fish with tapioca flour (1: 2) and the addition of water as much as 120 ml, obtained by the taste of savory Milkfish Payus crackers and rather fish taste. The following are the results of the Chi-Square test on taste criteria: From the Chi-Square test the taste, the value of Asymp. Sig 0.423 (more than 0.05). So the hypothesis is rejected, which means that the ratio of Milkfish Payus fish with tapioca flour and the addition of water does not significantly influence the taste of Milkfish Payus fish crackers.

The physical properties consist of crispness and blooming. The following are the results of the physical properties test for 30 respondents.

Fig. 3 Ratio of mean value of Taste criteria

Descriptive Statistics					
N Mean Std. Deviation				Minimum	Maximum
Criteria_Crunchiness_Product1	30	4.366666667	0.718395402	2	5
Criteria_Crunchiness_Product2	30	3.6	0.723973709	2	5
Criteria_Crunchiness_Product3	30	2.4	1.162636718	1	4
Criteria_Crunchiness_Product4	30	3.6	1.220514307	1	5

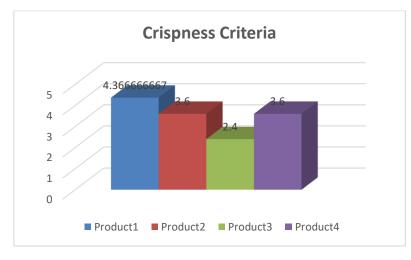


Fig. 4 Ratio of mean value of Crispness criteria

In term of crispness, the Milkfish Payus fish crackers are very crunchy. Based on the organoleptic test in Table 5 Figure 4, it can be seen that the lowest mean value of 2.4 is product 3 with a ratio of Milkfish Payus fish with tapioca flour (1: 2.2) and addition of 120 ml of water, resulting in crispy Milkfish crispy crackers. The highest mean value of 4.36 is product 1 with a ratio of Milkfish Payus fish with tapioca flour (1: 2) and the addition of water as much as 120 ml, obtained by the crispness of Milkfish Payus fish crackers. The value of Asymp. Sig 0.00005 (less than 0.05). So the hypothesis is accepted, which means that the ratio of Milkfish Payus fish with tapioca flour and the addition of water has a significant effect on the crispness of Milkfish Payus fish crackers.

Descri					
N Mean Std. Deviation				Minimum	Maximum
Criteria_Blooming_Product1	30	4.166666667	0.530668631	3	5
Criteria_Blooming_Product2	30	3.566666667	0.817200154	2	5
Criteria_Blooming_Product3	30	1.5	0.62972353	1	3
Criteria_Blooming_Product4	30	3.7	1.055363967	2	5

Table 6 Descriptive Statistics of Blooming Criteria

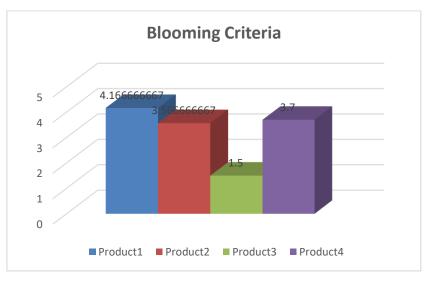


Fig. 5 Ratio of mean value of Blooming criteria

The expected blooming of Milkfish Payus fish crackers is very fluffy. Based on the organoleptic test in Table 6 and Figure 5, it can be seen that the lowest mean value of 1.5 is product 3 with the ratio of Milkfish Payus fish with tapioca flour (1: 2.2) and the addition of water as much as 120 ml. The highest mean value of 4.16 is product 1 with a ratio of Milkfish Payus fish with tapioca flour (1: 2) and the addition of water as much as 120 ml, obtained from the blooming of Milkfish Payus fish crackers that expand. The value of Asymp. Sig 0.00006 (less than 0.05). So the hypothesis is accepted, which means that the ratio of Milkfish Payus fish with tapioca flour and water addition has a significant effect on the blooming of Milkfish Payus fish crackers.

The chemical properties in this study are the water content contained in the cooked Milkfish Payus fish crackers. Water content test was carried out in the Laboratory of Department of Agriculture Industry Technology, University of Trunojoyo. Table 7 describes the results of the test of the water content of Milkfish Payus fish crackers.

Sample	Water Content (%)
A (Product 1)	0.40
B (Product 2)	0.48
C (Product 3)	0.82
D (Product 4)	0.74

Table 7	Water	content	Test	Results
---------	-------	---------	------	---------

The water quality standard contained in fish crackers is maximum 12%. The water content will decrease after being fried around 1.05% to 5.48% due to evaporation. In this study the mature test of the water content of cooked Milkfish Payus crackers was done using the gravimetric method. Based on the water content test carried out, it can be seen that the lowest water content is in the product experiment 1 with a ratio of Milkfish Payus fish with tapioca flour (1: 2) and the addition of water as much as 120 ml which is 0.40%. The highest water content is found in the product experiment 3 with a ratio of Milkfish Payus with tapioca flour (1: 2.2) and the addition of water as much as 120 ml which is 0.82%.

Conclusion

Ratio of Milkfish Payus fish and tapioca flour and the addition of water have a significant effect on organoleptic properties on the aroma of Milkfish Payus fish crackers, but have no significant effect on the color and taste of Milkfish Payus fish crackers. Ratio of Milkfish Payus fish with tapioca flour and the addition of water have a significant effect on the physical properties of the crispness and blooming of Milkfish Payus fish crackers. The results of the mature Milkfish Payus cracker water test showed that the lowest water content in this research experiment was on product 1 with a ratio of Milkfish Payus fish with tapioca flour (1: 2) and 120 ml addition water which is 0.40%. Meanwhile the highest water content was in the product experiment 3 with a ratio of Milkfish Payus with tapioca flour (1: 2.2) and the addition of water as much as 120 ml which is 0.82%. Further research is needed to examine the length of storage of Milkfish Payus fish on the frezeer and the length of drying of crackers in the blooming of Milkfish Payus fish crackers.

Acknowledgments

This research is an output of a Research Grant funded by the Ministry of Research, Technology and Higher Education through the Institute for Research and Community Service of the University of Trunojoyo Madura.

References

- [1]S. Koswara,: Information on <u>http://tekpan.unimus.ac.id/wp-content/uploads/2013/07/PENGOLAHAN-ANEKA-K-E-R-U-P-U-K.pdf</u>.
- [2] K. Nifah and N. Astuti: e-Journal Boga. Vol. 04, No. 01 (2015), p. 57.
- [3] F. Nurainy, R., Sugiharto, D.W. Sari: Jurnal Tek. Ind. & Hasil Pertanian. Vol. 20, No. 1(2015), p 11
- [4] T. D. Suryaningrum, D. Ikasari, Supriyadi, I. Mulya, and A. H. Purnomo: JIPK Vol. 11 No. 1 (2016) p. 2
- [5] S. B. Maureen, S. Surjoseputro, I. Epriliati: Journal of Food Technology and Nutrition Vol 15 No.1 (2016) p. 43
- [6] N. A. Syah and V. Indrawati: e-Jurnal Tata Boga Vol.01 (2019) The first Yudisium Edition, p. 86
- [7] Suwanda. Desain Eksperimen untuk Penelitian Ilmiah. Alfabeta. Bandung. (2011)
- [8] K.A. Hanafiah. Rancangan Percobaan Teori dan Aplikasi. Edisa Ketiga. PT Raja Grafindo Persada. Jakarta. (2009)
- [9] Wahana Komputer and Andi offset. Dasar-Dasar Analisis Statistik dengan SPSS 6.0 for Windows. Wahana Komputer dan ANDI offset. Yogyakarta. (1997)
- [10]Sugiyono. Statistika untuk Penelitian. Alfabeta. Bandung (2009)
- [11] Sugiyono and A. Susanto. Cara Mudah Belajar SPSS dan LISREL Teori dan Aplikasi untuk Analisis Data Penelitian. Alfabeta. Bandung. (2015)