Jurnal Teknik Industri

MENGESAHKAN

cetak / Fotocopy Sesuai dengan Asli

Universitas Trunojoyo
Fakultas Teknik

Semarang, Mei 2013

Volume VIII
Nomor 2
Halaman 73 - 142
RANCANG ULANG MESIN FERMENTASI ROTI DENGAN
PENDEKATAN REKAYASA NILAI DAN ANALITICAL HIRARCHY
PROCESS DIGUNAKAN SEPAGAI PEMBOBOTAN
ALTERNATIVE

Hakam Muzakki
Dosen Fakultas Teknik Universitas Trunojoyo Mt. Djava
muzakki.b@gmail.com

Absirak

Dalam makalah ini dibahas mengenai rekayasa ulang mesin fermentasi dengan beberapa alternatif rancangan dan komponen untuk meningkatkan kinerja dari mesin, serta juga dibahas mengenai analisa biaya dari masing-masing rancangan sehingga harga dari mesin yang baru lebih terjangkau oleh home industri. Agar pembahasan makalah ini lebih fokus maica studi kasus dilakukan pada perusahaan home industri roti UD XYZ di kabupaten Bangkalan.

Metode dan teknik yang digunakan dalam merancang ulang mesin fermentasi roti pada home industry UD XYZ dengan pendekatan rekayasa nilai, sistem pakar dipergunakan untuk mengalir informasi, langkah kreative, dsn penetuan kriteria dan pembobotan. fishbone diagram dan Pareto diagram dipergunakan untuk tahap identifikasi dan kreative. AHP dipergunakan untuk pembobotan dan penentuan kriteria atau alternatif. Alternatif 1 merupakan rancangan yang paling baik dibandingkan dengan alternatif-Alternatif yang lain, dan mempunyai kinerja hampir dua kali lipat dibandingkan dengan mesin awal.

Kata kunci : mesin fermentasi roti, rekayasa nilai, analytical hierarchy process

Abstract

This paper is discussed about redesign fermentation machine by some design alternatives and components to improve performance of machine, it is also explained about cost analysis each design so the price of machine is cheaper so the home industries can buy it. To focus, this paper has taken in c home industry. It is UD XYZ in Bangkalan distric.

Technique and method has been used to redesign fermentation cake at the home industry UD XYZ by value engineering, expert system is used to information stage, creative stage, and criteria decision stage and weight. Fishbone diagram and pareto diagram are used to identification and creative decision. AHP is used to weight and creative or alternative decision.

Alternative 1, one of some alternative, is the best alternative when compared with another and it has more than the old machine.

Keyword : baerd fermentation machine, value engineering, analytical hierarchy process

PENDAHULUAN

Usaha kecil menengah roti di kabupaten Bangkalan mengalami perkembangan yang sangat pesat sehingga menimbulkan konpeti si yang semakin ketat. Home industri roti agar bisa bersaing harus meningkatkan kualitas dan memperbaiki harga jual produk, saat ini mayoritas dari home industri masih menggunakan sistem dan fasilitas produksi yang masih tradisional.

Proses produksi roti yang masih tradisional yaitu proses produksi yang masih menggunakan lampu pijar pada proses fermentasi adonan, proses fermentasi menggunakan lampu pijar ini mempunyai beberapa kendala salah satunya penyebaran peningkatan temperatur yang tidak merata sehingga kualitasnya kurang maksimal. Ada beberapa Home Industri Roti yang telah menggunakan mesin fermentasi tetapi kerja dari mesin fermentasi yang masih ada masih ada beberapa kelemahan, selain harga mesinnya yang mahal biaya operasional masih cukup tinggi.

Dalam makalah ini dibahas mengenai rekayasa ulang mesin fermentasi dengan beberapa alternatif rancangan dan komponen untuk meningkatkan kinerja dari mesin, serta juga dibahas mengenai analisa
biaya dari masing-masing rancangan sehingga harga dari mesin yang baru lebih terjangkau oleh home industri. Agar pembahasan makalah ini lebih fokus maka studi kasus dilakukan pada perusahaan home industri roti UD XYZ di kaupaten Bangkalan.

Untuk mengoptimalkan hasil perancangan ulang mesin fermentasi ini digunakan pendekatan rekayasa nilai (value Engineering), Orginilitas dari makalah yaitu dibahas mengenai rancangan ulang mesin fermentasi adonan roti dengan pendekatan rekayasa nilai, Analytical Hyrarchy Process (AHP) dipergunakan untuk menentukan bobot dari beberapa alternative rekayasa, dan biaya juga dibahas dalam makalah ini.

METODE PENELITIAN

1. Subject
Mesin fermentasi menjadi bahasan utama dalam makalah ini terutama mesin fermentasi yang digunakan UD XYZ dalam proses produksi. Mesin fermentasi tersebut masih memiliki kelemahan yaitu penyebaran panas yang dihasilkan belum merata sehingga berdampak pada kualitas produk, biaya operasional masih cukup tinggi yang berdampak pada harga produk, dan biaya pengadaan mesin cukup mahal bila dibandingkan dengan kapasitas dari fungsinya.

2. Rekayasa Nilai (Value Engineering)
dalam merancang produk, pada tahapan evaluasi dari alternative digunakan Analytic Hierarchy Process (AHP) untuk pemboboran beberapa alternative.

3. Analytic Hierarchy Process (AHP)

HASIL DAN PEMBAHASAN

1. Langkah pertama Identifikasi dan informasi

Langkah identifikasi dan informasi, pada langkah pertama ini dibahas mengenai identifikasi terhadap mesin fermentasi yang telah dimiliki oleh industri rumah tangga UD. XYZ. Beberapa tools digunakan untuk proses identifikasi, pertama digunakan sistem pakar, kedua digunakan fishbone diagram dan kemudian diagram pareto.

Proses identifikasi dengan sistem pakar

Para operator mesin tersebut sebanyak 3 (tiga) orang yang dianggap sudah berpengalaman dan mengerti kelebihan dan kekurangan dari mesin yang ada. Pembahasan mengenai kelebihan dan kekurangan mesin yang telah ada dilakukan beberapa kali dan di antara pembahasan didatangkan seorang yang dianggap mahir dengan sistem dan fungsi kerja dari beberapa mesin fermentasi yang terbaru. Dari hasil pembahasan para pakar yang ada disimpulkan beberapa kelebihan dan kelemahan mesin fermentasi milik UD. XYZ.

Beberapa kelebihan dari mesin fermentasi yang ada yaitu:

- Biaya perawatan mesin dan alat bantu tinggi
- Investasi untuk pengadaan mesin sangat mahal.

Fishbone diagram

Beberapa kelemahan dan kelebihan telah ditentukan oleh beberapa orang yang dianggap pakar, dari kekurangan yang ada dijadikan dasar untuk mencari kelemahan dari rancangan yang ada. Dengan fishbone diagram ditentukan penyebab kelemahan dari mesin tersebut terutama dalam rancangan (design) dan komponennya.

![Gambar 1 Fishbone diagram biaya perawatan](image1)

![Gambar 2 Fishbone diagram suhu tidak merata](image2)

Histogram

Dengan histogram (Arazi Idrus and Chrisiano Utomo, 2010) diharapkan dapat mengetahui pengaruh pemerataan suhu, waktu preses, konsumsi listrik, dan biaya yang dibutuhkan pada mesin yang lama, dan dibandingkan dengan beberapa alternative rancangan yang baru.

J@TI Undip, Vol VIII, No 2, Mei 2013
2. Langkah kreatif
Berdasarkan langkah satu didapat beberapa alternative rancangan mesin yang baru dengan beberapa modifikasi sumber energi, sistem dan komponen kestabilan suhu, sistem dan komponen distribusi suhu. Dari beberapa kombinasi sistem dan komponen mesin sebagai rekayasa alternative mesin yang baru maka ada beberapa alternative mesin yang baru yaitu:
1. Alternative 1: gas, sistem otomatis, tanpa pipa
2. Alternative 2: gas, sistem otomatis, dengan 4 pipa
3. Alternative 3: gas, sistem otomatis, dengan 6 pipa
4. Alternative 4: gas, tidak otomatis, tanpa pipa
5. Alternative 5: gas, tidak otomatis, dengan 4 pipa
6. Alternative 6: gas, tidak otomatis, dengan 6 pipa
7. Alternative 7: mitan, ada sistem otomatis, tanpa pipa
8. Alternative 8: mitan, ada sistem otomatis, dengan 4 pipa
9. Alternative 9: mitan, ada sistem otomatis, dengan 6 pipa
10. Alternative 10: mitan, tidak otomatis, tanpa pipa
11. Alternative 11: mitan, tidak otomatis, dengan 4 pipa
12. Alternative 12: mitan, tidak otomatis, dengan 6 pipa
14. Alternative 14: listrik dan gas, ada sistem otomatis, dengan 4 pipa
15. Alternative 15: listrik dan gas, ada sistem otomatis, dengan 6 pipa
16. Alternative 16: listrik dan gas, tidak otomatis, tanpa pipa
17. Alternative 17: listrik dan gas, tidak otomatis, dengan 4 pipa
18. Alternative 18: listrik dan gas, tidak otomatis, dengan 6 pipa

Dari hasil diskusi para paker ditentukan enam alternative yang menjadi prioritas:
1. Alternative 1: gas, ada sistem otomatis tanpa pipa
2. Alternative 3: gas, ada sistem otomatis dengan 6 pipa
3. Alternative 7: mitan, ada sistem otomatis tanpa pipa
4. Alternative 8: mitan, ada sistem otomatis dengan 4 pipa
5. Alternative 13: listrik dan gas, ada sistem otomatis tanpa pipa
6. Alternative 15: listrik dan gas, ada sistem otomatis dengan 6 pipa

Gambar 3 Histogram mesin fermentasi yang lama

Gambar 4 Rancangan mesin alternative 15
3. **Langkah Analisa**

Dalam makalah ini dibahas analisa biaya untuk setiap alternative rancangan mesin, bagian-bagian yang menimbulkan sebagai dasar penentuan besarnya biaya yaitu biaya komponen mesin, biaya konsumsi energi, dan biaya perawatan.

<table>
<thead>
<tr>
<th>Biaya investasi (Rp)</th>
<th>Ongkos Energi (Rp)</th>
<th>Ongkos Perawatan (Rp)</th>
<th>Total Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000.000</td>
<td>7.450</td>
<td>20.000</td>
<td>25.027.450</td>
</tr>
</tbody>
</table>

Tabel 2 Tabel perincian penghematan biaya alternatif 1

<table>
<thead>
<tr>
<th>Biaya Investasi/mesin (Rp)</th>
<th>Biaya komponen otomatis Listrik (Rp)</th>
<th>Biaya Elemen listrik (Rp)</th>
<th>Efisiensi Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000.000</td>
<td>4.500.000</td>
<td>500.000</td>
<td>20.000.000</td>
</tr>
</tbody>
</table>

Tabel 3 Tabel perincian total biaya alternatif 1 (Energi Gas sistem otomatis tanpa Pipa)

<table>
<thead>
<tr>
<th>Efisiensi biaya (Rp)</th>
<th>Biaya Energi/hari (Rp)</th>
<th>Biaya Perawatan/hari (Rp)</th>
<th>Biaya Komponen (Rp)</th>
<th>Total Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.000.000</td>
<td>5.517</td>
<td>24.000</td>
<td>2.000.000</td>
<td>22.029.517</td>
</tr>
</tbody>
</table>

Tabel 4 Tabel perincian total reduksi cost Alternatif 3

<table>
<thead>
<tr>
<th>Biaya Investasi/mesin (Rp)</th>
<th>Biaya komponen otomatis Listrik (Rp)</th>
<th>Biaya Elemen listrik (Rp)</th>
<th>Efisiensi biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000.000</td>
<td>4.500.000</td>
<td>500.000</td>
<td>20.000.000</td>
</tr>
</tbody>
</table>

Tabel 5 Tabel perincian total biaya Alternatif 3

<table>
<thead>
<tr>
<th>Efisiensi biaya (Rp)</th>
<th>Biaya Energi/hari (Rp)</th>
<th>Biaya Perawatan/hari (Rp)</th>
<th>Biaya komponen (Rp)</th>
<th>Total Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.000.000</td>
<td>5.517</td>
<td>24.000</td>
<td>2.378.000</td>
<td>22.029.517</td>
</tr>
</tbody>
</table>

Tabel 6 Tabel perincian total reduksi cost Alternatif 7

<table>
<thead>
<tr>
<th>Biaya Investasi/mesin (Rp)</th>
<th>Biaya komponen otomatis Listrik (Rp)</th>
<th>Biaya Elemen listrik (Rp)</th>
<th>Efisiensi biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000.000</td>
<td>4.505.000</td>
<td>306.000</td>
<td>20.000.000</td>
</tr>
</tbody>
</table>

Tabel 7 Tabel perincian total biaya Alternatif 7

<table>
<thead>
<tr>
<th>Efisiensi biaya (Rp)</th>
<th>Biaya Energi Hari (Rp)</th>
<th>Biaya Perawatan hari (Rp)</th>
<th>Biaya Komponen (Rp)</th>
<th>Total Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.000.000</td>
<td>6.292</td>
<td>26.000</td>
<td>1350.000</td>
<td>21.382.292</td>
</tr>
</tbody>
</table>

Tabel 8 Tabel perincian total reduksi cost Alternatif 9

<table>
<thead>
<tr>
<th>Biaya Investasi/mesin (Rp)</th>
<th>Biaya komponen otomatis Listrik (Rp)</th>
<th>Biaya Elemen listrik (Rp)</th>
<th>Efisiensi biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000.000</td>
<td>4.500.000</td>
<td>500.000</td>
<td>20.000.000</td>
</tr>
</tbody>
</table>

Tabel 9 Tabel perincian total biaya Alternatif 8

<table>
<thead>
<tr>
<th>Efisiensi biaya (Rp)</th>
<th>Biaya Energi Hari (Rp)</th>
<th>Biaya Perawatan hari (Rp)</th>
<th>Biaya Komponen (Rp)</th>
<th>Total Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.000.000</td>
<td>6.292</td>
<td>26.000</td>
<td>1.602.000</td>
<td>21.382.292</td>
</tr>
</tbody>
</table>

J@TI Undip, Vol VIII, No 2, Mei 2013
Tabel 10. Tabel perincian total biaya Alternatif 13

<table>
<thead>
<tr>
<th>Biaya Investasi/mesin (Rp)</th>
<th>Biaya komponen otomatis Listrik (Rp)</th>
<th>Biaya Elemen listrik (Rp)</th>
<th>Efisiensi biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000.000</td>
<td>4.500.000</td>
<td>500.000</td>
<td>20.000.000</td>
</tr>
</tbody>
</table>

Tabel 11 Tabel perincian total biaya Alternatif 13

<table>
<thead>
<tr>
<th>Efisiensi biaya (Rp)</th>
<th>Biaya Energi/ Hari (Rp)</th>
<th>Biaya perawatan/ hari (Rp)</th>
<th>Biaya Komponen (Rp)</th>
<th>Total Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.000.000</td>
<td>2.900</td>
<td>18.000</td>
<td>4.000.000</td>
<td>24.920.900</td>
</tr>
</tbody>
</table>

Tabel 12 Tabel perincian total biaya Alternatif 15

<table>
<thead>
<tr>
<th>Biaya Investasi/mesin (Rp)</th>
<th>Biaya komponen otomatis Listrik (Rp)</th>
<th>Biaya Elemen listrik (Rp)</th>
<th>Efisiensi biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000.000</td>
<td>4.500.000</td>
<td>500.000</td>
<td>20.000.000</td>
</tr>
</tbody>
</table>

Tabel 13 Tabel perincian total biaya Alternatif 15

<table>
<thead>
<tr>
<th>Efisiensi biaya (Rp)</th>
<th>Biaya Energi/ Hari (Rp)</th>
<th>Biaya Perawatan/ hari (Rp)</th>
<th>Biaya Komponen (Rp)</th>
<th>Total Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rp 20.000.000</td>
<td>Rp 2.900</td>
<td>Rp 18.000</td>
<td>Rp 4.378.000</td>
<td>Rp 24.398.900</td>
</tr>
</tbody>
</table>

Tabel 14 Tabel rekapitulasi perincian biaya operasional mesin alternatif 1,3,7,8,13,15 selama 5 tahun

<table>
<thead>
<tr>
<th>Mesin</th>
<th>Biaya total operasional (Rp/Hari)</th>
<th>Biaya Total (5 Tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desain Awal</td>
<td>27.450</td>
<td>49.410.000</td>
</tr>
<tr>
<td>Alternatif 1</td>
<td>29.519</td>
<td>53.134.200</td>
</tr>
<tr>
<td>Alternatif 3</td>
<td>29.319</td>
<td>53.134.200</td>
</tr>
<tr>
<td>Alternatif 7</td>
<td>31.292</td>
<td>56.325.600</td>
</tr>
<tr>
<td>Alternatif 8</td>
<td>31.292</td>
<td>56.325.600</td>
</tr>
<tr>
<td>Alternatif 13</td>
<td>20.900</td>
<td>37.620.000</td>
</tr>
<tr>
<td>Alternatif 15</td>
<td>20.900</td>
<td>37.620.000</td>
</tr>
</tbody>
</table>

Tabel 16 Beberapa performansi setiap alternatif

<table>
<thead>
<tr>
<th>No</th>
<th>Alternatif Rancangan</th>
<th>Performansi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mesin Awal</td>
<td>264</td>
</tr>
<tr>
<td>2</td>
<td>Alternatif 1</td>
<td>302</td>
</tr>
<tr>
<td>3</td>
<td>Alternatif 3</td>
<td>314</td>
</tr>
<tr>
<td>4</td>
<td>Alternatif 7</td>
<td>265</td>
</tr>
<tr>
<td>5</td>
<td>Alternatif 8</td>
<td>265</td>
</tr>
<tr>
<td>6</td>
<td>Alternatif 13</td>
<td>295</td>
</tr>
<tr>
<td>7</td>
<td>Alternatif 15</td>
<td>291</td>
</tr>
</tbody>
</table>

4. Kekurangan dan Kelebihan Alternatif Rancangan

Setelah melakukan analisa dari beberapa alternative rancangan mulai dari biaya operasional, pembobotan dengan AHP (Devendra Singh Verma and Ajitabh pateriya, 2013)

5. Langkah Rekomendasi

Pada langkah rekomendasi didasarkan pada beberapa perhitungan dan penilaian performansi dan nilai (value). Perhitungan Performansi dalam makalah ini didasarkan pada Biaya, Kualitas Produk, Kemudahan proses, dan Kinerja penerataan suhu

J@TI Undip, Vol VIII, No 2, Mei 2013 128
<table>
<thead>
<tr>
<th>Alternatif</th>
<th>Kelebihan</th>
<th>Kekurangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesin awal</td>
<td>Waktu proses pemutangan lebih cepat, kemudahan proses bagi operator.</td>
<td>Harga mahal, biaya investasi dan biaya perawatan mesin mahal jika dibandingkan dengan alternatif 1 dan alternatif 2.</td>
</tr>
<tr>
<td></td>
<td>Untuk pemerataan suhu biaya investasi yang dibutuhkan lebih ruruh.</td>
<td>Harga listrik PLN mahal</td>
</tr>
</tbody>
</table>
| Alternatif 1 | Biaya investasi pada sumber energi lebih murah jika dibandingkan dengan mesin alternatif 3, alternatif 13 dan alternatif 15 | Biaya perawatan mesin per hari masih mahal jika dibandingkan dengan alternatif 3 dan dessai awal.
Biaya operasional mesin selama 5 tahun mahal.
Tidak terdapat pipa sebagai pendistribusian suhu pada tiap level rak mesin |
| | Gas mudah didapatkan dipasaran
Kemudahan proses pada mesin baik dari proses perawatan dan proses menjalankan mesin. | |
| Alternatif 3 | Biaya investasi pada sumber energi cukup murah.
Gas mudah didapatkan dipasaran
Kemudahan dalam menjalankan proses mesin dan proses perawatan | Biaya perawatan mesin per hari masih mahal jika dibandingkan dengan alternatif 3 dan dessai awal.
Biaya operasional mesin selama 5 tahun mahal.
Biaya komponen lebih mahal jika dibandingkan dengan alternatif 1 |
| | Biaya investasi pada sumber energi cukup murah.
Biaya operasional mesin selama 5 tahun sangat mahal
Kemudahan operasi pada mesin | Biaya perawatan mesin sangat mahal.
Mitir sulit didapatkan dipasaran
Kualitas hasil mesin sangat rendah |
| Alternatif 8 | Biaya investasi pada sumber energi cukup murah.
Adanya alat distribusi suhu mesin | Biaya perawatan mesin sangat mahal.
Biaya operasional mesin selama 5 tahun sangat mahal jika dibandingkan dengan alternatif 7.
Mitir sulit didapatkan dipasaran |
| Alternatif 13 | Biaya Energi dan biaya perawatan yang dibutuhkan perhari lebih murah
Perawatan Mesin mudah dilakukan
Kemudahan proses bagi operator. | Harga mahal
Biaya komponen mesin mahal
Biaya yang dikeluarkan untuk investasi mesin cukup tinggi
Perlu pengawasan ekstra agar lebih hati-hati dalam pengunaannya |
| Alternatif 15 | Biaya Energi dan biaya perawatan yang dibutuhkan perhari lebih murah
Perawatan Mesin mudah dilakukan
Kemudahan proses bagi operator.
Terdapat pipa sebagai pendistribusi suhu dalam setiap level rak mesin | Harga mahal
Biaya yang dikeluarkan untuk investasi mesin cukup tinggi
Perlu pengawasan ekstra agar lebih hati-hati dalam pengunaannya |
Tabel 17 Hasil pembobotan dan performansi

<table>
<thead>
<tr>
<th>No</th>
<th>Alternatif Rancangan</th>
<th>Pn</th>
<th>Rangking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mesin Awal</td>
<td>30,910</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Alternatif 1</td>
<td>41,003</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Alternatif 3</td>
<td>40,921</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Alternatif 7</td>
<td>36,015</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Alternatif 8</td>
<td>36,073</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Alternatif 13</td>
<td>37,324</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Alternatif 15</td>
<td>37,300</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 18 Perbandingan setiap alternatif dengan mesin yang telah ada

<table>
<thead>
<tr>
<th>No</th>
<th>Alternatif Rancangan</th>
<th>Pn</th>
<th>Cn</th>
<th>Value</th>
<th>Rating</th>
<th>Konstanta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mesin Awal</td>
<td>30,910</td>
<td>25,027,450</td>
<td>0,000001235</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Alternatif 1</td>
<td>41,003</td>
<td>22,029,517</td>
<td>0,000001861</td>
<td>1,507</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Alternatif 3</td>
<td>40,921</td>
<td>22,497,517</td>
<td>0,000001826</td>
<td>1,479</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Alternatif 7</td>
<td>36,015</td>
<td>21,381,292</td>
<td>0,000001684</td>
<td>1,326</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Alternatif 8</td>
<td>36,073</td>
<td>21,633,292</td>
<td>0,000001667</td>
<td>1,350</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Alternatif 13</td>
<td>37,324</td>
<td>24,020,900</td>
<td>0,000001554</td>
<td>1,258</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Alternatif 15</td>
<td>37,300</td>
<td>24,398,900</td>
<td>0,000001529</td>
<td>1,238</td>
<td>6</td>
</tr>
</tbody>
</table>

Setiap nilai performansi dikalikan dengan pembobotan yang diperoleh dengan pendekatan AHP dan ditampilkan dengan tabel di atas.

Perbandingan nilai tertinggi yaitu alternatif Idengan perbandingan nilai 1,507 dan performansi 41,003. Alternatif yang terbaik yaitu alternatif 1.

ANALISA

Analisa penilaian tiap criterion

Berdasarkan penilaian ketiga orang pakar (Yu-Lung Hsu et al., 2010) pada tiap kriteria dan sub kriteria maka didapatkan nilai dari rata-rata bobot tiap kriteria dan sub kriteria tersebut yaitu:

1. Biaya = 0,458
 - Biaya Konsumsi Energi = 0,206
 - Biaya Investasi = 0,114
 - Biaya Perawatan = 0,137

2. Kualitas Hasil = 0,196
 - Roti Rusak = 0,096
 - Roti Tidak Matang = 0,044
 - Roti Beresidu = 0,56

3. Kemudahan Proses = 0,202
 - Perawatan Mesin = 0,028
 - Proses menjalankan Mesin = 0,174

4. Kinerja = 0,143
 - Kestabilan Suhu = 0,067
 - Distribusi suhu didalam mesin = 0,048
 - Kecepatan Mencapai suhu yang dinginkan = 0,028

Analisa Performansi

Analisa performansi menunjukkan fungsi (performance benefit) yang dihitung dari penilaian perceptual based performance. Dari perhitungan performansi maka dijumpai nilai performansi terbobot dari tiap alternative yang dimunculkan dan berdasarkan hasil perangkingan nilai performansinya maka didapatkan alternative 1 sumber energi gas sistem otomatis tanpa pipa sebagai alternative yang mempunyai performansi tertinggi yaitu 41,003, alternative 3 sumber energi gas sistem otomatis dengan menggunakan 6 pipa sebesar 40,921, alternative 7 sumber energi minat sistem otomatis tanpa pipa sebesar 36,015, alternative 8 sumber energi sistem otomatis dengan 4 pipa sebesar 36,073, alternative 13 sumber energi listrik-gas sistem otomatis tanpa pipa sebesar 37,224, alternative 15 sumber energi listrik-gas sistem otomatis dengan 6
pipa sebesar 37,300, dan mesin awal dengan nilai performansi terendah sebesar 30,910.

Analisa Value
Analisa value menunjukkan nilai satuan alternatif yang dihitung dari perbandingan antara performansi dan biaya. Alternatif yang memiliki value tertinggi akan menjadi alternatif terbaik yang direkomendasikan. Berdasarkan perumusan perhitungan value, dengan menggunakan perbandingan performansi tiap alternatif dengan mesin awal dan biaya yang dibutuhkan didapatkan Alternatif 1 yaitu mesin fermentasi yang menggunakan sumber energi gas sistem otomatis tanpa pipa sebagai alternative terbaik dengan value terbesar yaitu 1,507 dengan performance sebesar 41,003 dan biaya sebesar Rp 22,029,517,- jika dibandingkan dengan alternative yang lainnya. Jadi pemilihan alternative terbaik untuk mesin fermentasi roti ini adalah dipilih alternatif 1 dengan menggunakan sumber energi gas yang ada sistem otomotis tanpa menggunakan pipa.

KESIMPULAN
Berdasarkan hasil perhitungan value (nilai) didapatkan alternatif 1, yaitu mesin fermentasi dengan sumber energi gas sistem otomatis tanpa pipa, sebagai alternative terbaik dengan nilai 5,07. Nilai ini dipertoli dari performansi sebesar 41,003 dan biaya sebesar Rp 22,029,517,-
Menentukan valor terbaik yang direkomendasikan dari hasil penelitian ini adalah mesin fermentasi sistem otomatis tanpa menggunakan pipa yang ditambahkan untuk pemetaian distribusi suhu. Sehingga hasil penelitian ini tidak menjawab perumusan masalah kedua yang ingin dipecahkan.

DAFTAR PUSTAKA

