2015 International Conference on Information Technology Systems and Innovation (ICITSI)

Proceedings

November 16 – 19, 2015
Bandung – Bali, Indonesia

IEEE Conference Number #36052
IEEE Catalog Number : CFP1590Y-ART

Organizer:

• School of Electrical Engineering and Informatics – ITB
• Information Networks and System Lab – ITB
• Jurusan Teknologi Informasi - Udayana

Sponsored by:
General Chair
 Suhardi - Institute of Technology Bandung

Steering Committee
 • Suhono Harso Supangkat (Chair) – Institute of Technology Bandung
 • I Ketut Gede Darma Putra – Udayana University
 • Jaka Sembiring - Institute of Technology Bandung
 • John Yearwood – Deakin University
 • Robin Doss – Deakin University

Organizing Committee
 • Kusprasapta Mutijarsa (Chair) – Institute of Technology Bandung
 • A. A. Kompiang Oka Sudana – Udayana University
 • A. A. Kt. Agung Cahyawan Wiranatha – Udayana University
 • Dessy Purnami Singgih Putri – Udayana University
 • Dwi Putra Githa – Udayana University
 • Gusti Made Arya Sasmita – Udayana University
 • I Putu Agus Eka Pratama – Udayana University
 • IGB. Baskara - Institute of Technology Bandung
 • Kadek Suar Wibawa – Udayana University
 • Made Sunia Atmaja – Udayana University
 • Ni Kadek Dwi Rusjayanti – Udayana University
 • Ni Putu Sutramianri – Udayana University
 • Putu Arya Dharmadi – Udayana University
 • Putu Wira Buana – Udayana University
 • Samuel Andi Kristyan – Institute of Technology Bandung
 • Yoanes Bandung – Institute of Technology Bandung

Technical Program Committee
 • Armein Z. R. Langi (chair) – Institute of Technology Bandung
 • Adit Kurniawan – Institute of Technology Bandung
 • Andrian Bayu – Institute of Technology Bandung
 • Arry Akhmad Arman – Institute of Technology Bandung
 • Ary P. Setijadi – Indonesia IEEE CS chair
 • Bambang Riyanto Trilaksono – Institute of Technology Bandung
 • Benhard Sitohang – Institute of Technology Bandung
 • Budi P. Resosudarmo – Australian National University
 • Dinh Phung – Deakin University, Australia
 • Endra Joelianto – Institute of Technology Bandung
 • Hyoung-Gook Kim – Kwangwoon University, South Korea
 • I Ketut Adi Purnawan – Udayana University
 • I Made Sukarsa – Udayana University
 • I Nyoman Piarsa – Udayana University
 • I Putu Agung Bayupati – Udayana University
 • Iping Supriana – Institute of Technology Bandung
 • Kangbin Yim – Soon Chung Yang University, South Korea
• Kwangjo Kim – KAIST, South Korea
• Ni Kadek Ayu Wirdiani – Udayana University
• Ni Made Ika Marini Mandenni – Udayana University
• Pekik Argo Dahono – Institute of Technology Bandung
• Shanton Chang – University of Melbourne, Australia
• Simon Milton – University of Melbourne, Australia
• Thomas Magedanz – Technical University of Berlin, German
• Wahyu Catur Wibowo – University of Indonesia
• Wanlei Zhou – Deakin University, Australia
• Wiseto Agung – PT. Telkom Indonesia
• Ying-Dar Lin – National Chiao Tung University, Taiwan

Publication Editor
• Suhardi
• Armein Z. R. Langi
• Yudi Satria Gondokaryono
TABLE OF CONTENTS

A-01 A Process Capability Assessment Model of IT Governance Based on ISO 38500
Rahmi Eka Putri and Kridanto Surendro

A-02 Automatic Sperm Motility Measurement
Priyanto Hidayatullah, Iwan Awaludin, Reyhan Damar Kusumo and Muhammad Nuriyadi

A-03 Comparative Study between Part-of-Speech and Statistical Methods of Text Extraction in the Tourism Domain
Guson P. Kuntarto, Fahmi L. Moechtar, Berkah I. Santoso and Irwan P. Gunawan

A-04 A Multi-Method Exploration: The Use of Mobile Spiritual Applications amongst Older Adults
Azaliza Zainal, Nahdatul Akma Ahmad, Fariza Hanis Abdul Razak and Ariza Nordin

A-05 Visual Object Tracking Using Improved Mean Shift Algorithm
Sulfan Bagus Setyawan, Djoko Purwanto and Ronny Mardiyanto

A-06 Experiment on a Phrase-Based Statistical Machine Translation Using PoS Tag Information for Sundanese into Indonesian
Arie Ardiyanti Suryani, Dwi Hendratmo Widyantoro, Ayu Purwarianti and Yayat Sudaryat

A-07 An Analysis of Software Project Management (Case Study: Government Agencies)
Mas’ud Adhi Saputra and Arry Akhmad Arman

A-08 A Speech Emotion Recognition Method in Cross-languages corpus Based on Feature Adaptation
Xinran Zhang, Gang Xiao, Cheng Zha and Li Zhao

A-09 Dynamic Student Assessment to Advocate Personalized Learning Plan
Ahmad Sofian Shminan and Mohd Kamal Othman

A-10 The Intensity of the Research Activities on E Learning for Care Givers of Autistic Children
Ahmad Sofian Shminan, Norsiah Fauzan and Merikan Aren

A-11 A Strategy to Create Daily Consumer Price Index by Using Big Data in Statistics Indonesia
Doran Pandapotan Manik and Albarda

A-12 An Ontology Tropical Weather Model For Sensor Network Interoperability
Sandra Yuwana and Devi Munandar

A-13 Software Complexity Metric-based Defect Classification Using FARM with Preprocessing Step CFS and SMOTE (A Preliminary Study)
Mohammad Farid Naufal and Siti Rochimah

A-14 Designing a Rice Logistics Distribution System In West Java
Muhammad Rizkarmen, Rolan Mauludy Dahlann and Yudi Satria Gondokaryono

A-15 Generating Cultural Heritage Metadata as Linked Open Data
Nurul Fajrin Ariyani and Umi Laili Yuhana

A-16 Implementation of Dendritic Cell Algorithm as an Anomaly Detection Method for Port Scanning Attack
Silvia Anandita, Yusep Rosmansyah, Budiman Dabarsyah and Jong Uk Choi

A-17 Design and Implementation Information Security Governance Using Analytic Network Process and COBIT 5 For Information Security A Case Study of Unit XYZ
Haryo Laksono and Yose Supriyadi

A-18 Modeling of the Pixel Based Segmentation to Detect Nerve Optic Head on the Retinal Image
A-19 Agent-Based Structural Health Monitoring System on Single Degree of Freedom Bridge: A Preliminary Study
Seno Adi Putra, Bambang Riyanto Trilaksono, Agung Harsoyo and Achmad Imam

A-20 Comparison on the Rule based Method and Statistical based Method on Emotion Classification for Indonesian Twitter Text
Aldy Rialdy Atmadja and Ayu Purwarianti

A-21 Assessment Of Information Technology Security Governance For Supervisory Control And Data Acquisition (Scada) On The Smart Grid Electricity
Ahmad Budi Setiawan, Aries Syamsudin and Yusep Rosmansyah

A-22 Study of Management Information System and Organizational Culture toward the Success of several Banks in Indonesia
Trisna Febriana

A-23 Genetic Algorithm for Capacitated Vehicle Routing Problem with Considering Traffic Density
Rasyid Kurniawan, Mahmud Dwi Sulistiyo and Gia Septiana Wulandari

A-24 Automatic Indonesia’s Questions Classification Based On Bloom’s Taxonomy Using Natural Language Processing (A Preliminary Study)
Selvia Ferdiana Kusuma, Daniel Siahaan and Umi Laili Yuhana

A-25 JavaScript-based Device Fingerprinting Mitigation Using Personal HTTP Proxy
Tio Dwi Laksono, Yusep Rosmansyah, Budiman Dabarsyah and Jong Uk Choi

A-26 Acoustic Emissions Waveform Analysis for the Recognition of Coal Rock Stability
Jing Li, Li Zhao, Jianhua Yue and Yong Yang

A-27 Design and Implementation of Digital Signage System based on Raspberry Pi 2 for e-Tourism in Indonesia
Yoanes Bandung, Yonathan F. Hendra and Luki Bangun Subekti

A-28 Modified Kleptodata for Spying Soft-Input Keystroke and Location Based on Android Mobile Device
Surya Michrandi Nasution, Yudha Purwanto, Agus Virgono and M. Faris Ruriawan

A-29 The Challenges of Delivering Multimedia-based Learning Services in Rural Areas
Yoanes Bandung, Achmad Maulana Gani, Harry Chandra Tanuwidjaja and Jaka Sembiring

A-30 Wavelet Based Feature Extraction for The Vowel Sound
Risanuri Hidayat, Priyatmadi and Welly Ikawijaya

A-31 Review and Classification of Electronic Cash Research
Dany Eka Saputra, Suhono Harso Supangkat and Sarwono Sutikno

A-32 Assessing Users’ Acceptance toward a Closed Access Library Service System Using the UTAUT Model: A Case Study at the National Library of Indonesia
Dewi Endah Wasitarini and Wiratna Tritawirasta

A-33 TF-IDF Method in Ranking Keywords of Instagram Users’ Image Captions
Bernardus Ari Kuncoro and Bambang Heru Iswanto

A-34 Gaussian Mixture Model and Spatial-Temporal Evaluation for Object Detection and Tracking in Video Surveillance System
Luqman Abdul Mushawwir and Iping Supriana

A-35 E-commerce Implementation to Support Ornamental Fish Breeders in Indonesia
Meyliana and Henry Antonius Eka Widjaja
A-36 A Design of Software Requirement Engineering Framework based on Knowledge Management and Service-Oriented Architecture Decision (SOAD) Modeling Framework
Noor Afies Prasetyo and Yoanes Bandung

A-37 The Design of Production Modules of ERP Systems based on Requirements Engineering for Electronic Manufacturing Services Company
Kursehi Falgenti, Chandra Mai and Said Mirza Pahlevi

A-38 Combining Ground-based Data and MODIS Data for Rice Crop Estimation in Indonesia
Sani M. Isa, Suhadi Chandra, Dyah Erny Herwindiati and Sidik Mulyono

A-39 Mobile-Agent’s Self-Reliant Host Security Examination
Irwan, Armein Z. R. Langi and Emir Husni

A-40 Assembly of Tin Oxide Nanowires for Dielectrophoretic Response Modeling
Ahmad Sabry Mohamad, Kai F. Hoettges and Michael Pycraft Hughes

A-41 Design and Implementation Service Oriented Architecture for Data and Information Service in Bandung Health Office
Fathonah Tri Hastuti and R. Andri Priyatna P

A-42 CSF for implementation E-portfolio model: A Systematic Review
Puji Rahayu and Dana Indra Sensuse

A-43 The Estimation of Cartoons Effect on Children’s Behavior Based on Exaggeration Action by Using Neural Network
Riwinoto, Sandi Prasetyaningsih and Cahya Miranto

A-44 Measuring Performance Level of Smart Transportation System in Big Cities of Indonesia Comparative Study: Jakarta, Bandung, Medan, Surabaya, and Makassar
Atut Pindarwati and Arie Wahyu Wijayanto

A-45 Defining Knowledge of Government Human Capital Management: A Qualitative Study
Elin Cahyaningsih, Dana Indra Sensuse and Wina Permana Sari

A-46 Critical Success Factor of Knowledge Management Implementation in Government Human Capital Management: A Mixed Method
Elin Cahyaningsih, Dana Indra Sensuse and Wina Permana Sari

A-47 Improving Infectious Diseases Prevention System: The Case Study of Departement of Health Sragen
Rochim Wahyu Pramudyyo, Rian Agustama Susilo, Dianti Eka Aprilia and Alharda

A-48 A Study of TESCA an Indonesia' Higher Education E-Readiness Assessment Model
Marcel

A-49 Social CRM using Web Mining for Indonesian Academic Institution
Nyoman Karna, Iping Supriana and Nur Maulidevi

A-50 Risk Assessment Model of Application Development using Bayesian Network and Boehm’s Software Risk Principles
Josua Johan Pandapotan Sipayung and Jaka Sembiring

A-51 Development of Real-Time Collaboration System for E-book Writing
Muhammad Eko Budi Prasetyo and Yoanes Bandung

A-52 Development of User Acceptance Model for Electronic Medical Record System
Arry Akhmad Arman and Sri Hartati

A-53 Design of FTTS Forecasting Model using Markov Chain and P2AMF Framework Case Study : Farmer’s Terms of Trade of Smallholders Estate Crops Subsector in Riau
A-54 Improvement of Fuzzy Geographically Weighted Clustering-Ant Colony Optimization using Context-Based Clustering
Zulyadi and Jaka Sembiring
Nila Nurmalha and Ayu Purwarianti

A-55 Lip Reading Based on Background Subtraction and Image Projection
Fatchul Arifin, Aris Nasuha and Hardika Dwi Hermawan

A-56 A Comparative Study On Three Electronics Toll Collection Systems In Surabaya
Rudy Hermawan Karsaman, Yudo Adi Nugraha, Sri Hendarto and Febri Zukhruf

A-57 Analysis On The Implementation Of Digital Marketing Towards Motorbike Transport Service Case Study: GO-JEK (Online Taxi Motorbike) Jakarta, Indonesia
F.A. Wisnu Wirawa and Elsie Oktivera

A-58 A Preliminary Study of Modelling Interconnected Systems Initiatives for Preserving Indigenous Knowledge in Indonesia
Handrie Noprisson, Erzi Hidayat and Nuralamsah Zulkarnain

A-59 WSN Infrastructure for Green Campus Development
Eko D. Widianto, Adian F. Rochim, Oky D. Nurhayati and Sumardi

A-60 Measurement of Learning Motivation in Electronic Learning
Christina Juliane, Arry A. Arman, Husni S. Sastramihardja and Iping Supriana

A-61 An Analysis of Information Technology Governance Case study: Statistics Indonesia
Amalia Romadhona and Arry Akhmad Arman

A-62 Identification of Causal Pattern using Opinion Analysis in Indonesian Medical Texts
Susetyo Bagas Bhaskoro, Saiful Akbar and Suhono Harso Supangkat

A-63 Intelligent Home Management System Prototype Design and Development
Azka Ihsan Nurrahman and Kusprasapta Mutijarsa

A-64 Relationship Between Features Volatility And Software Architecture Design Stability In Object-Oriented Software: Preliminary Analysis
Felix Handani and Siti Rochimah

A-65 Design and Development Prototype of Electronic Payment System for Angkot Case Study: City of Bandung, Indonesia
Khairani Ummah and Kusprasapta Mutijarsa

A-66 ERP Assimilation and Benefit Realization: Analyzing the Influence of Leader Characteristics
Rajesri Govindaraju, Rizka Aisha Rahmi Hariadi and Ahmad Zamakhsyari Sidiq

A-67 Critical Processes in Developing Client-Vendor Relationship in the Case of Offshore IT/IS Outsourcing
Rajesri Govindaraju, Yogi Yusuf Wibisono and Ahmad Zamakhsyari Sidiq

A-68 A Framework for Designing Survey Training based on 3D Virtual Learning Environment Using SLOODLE
Rico Martensiyaro and Yusep Rosmansyah

A-69 Survey on Research Paper’s Relations
Yuliant Sibaroni, Dwi Hendratmo Widyantoro and Masayu Leylia Khodra

A-70 Methodology Development of Information Technology Value Engineering using Systems Engineering Approach
Lukman Abdurrahman and Suhardi

A-71 Consolidating Service Engineering Perspectives
Purnomo Yustianto, Suhardi and Robin Doss
A-72 Appliances Identification Method of Non-Intrusive Load Monitoring based on Load Signature of V-I Trajectory
Nur Iksan, Jaka Sembiring, Nanang Haryanto and Suhono Harso Supangkat

A-73 Design of Organization Readiness Model for E-learning Implementation
Arry Akhmad Arman and Cindy M. N. S. Wiyono
Modeling of the Pixel Based Segmentation to Detect Nerve Optic Head on the Retinal Image

Arif Muntasa
Informatics Department
University of Trunojoyo Madura
Madura Island, East Java, Indonesia
arifmuntasa@if.trunojoyo.ac.id

Indah Agustien Siradjuddin, Moch Kautsar Sophan
Informatics Department
University of Trunojoyo Madura
Madura Island, East Java, Indonesia
Indah.agustien@if.trunojoyo.ac.id, kautsar@if.trunojoyo.ac.id

Abstract—Pixel based segmentation to detect the Nerve Optic Head (NOH) Pixels in the retinal image is proposed. Five main stages are required in the proposed model. They are image enhancement, binary thresholding, removing non-object pixels, finding Region of Interest, and dilation with mathematical morphology. Image enhancement stage is used to reduce the noise pixels and sharpened the target object. The enhanced image is transformed into a binary image in the second stage. Foreground pixels are then clustered or labeled using connected component, and the clustered pixels with fewer pixels are then removed. The density of the remained clustered pixels is then calculated to find the wide of the density area. The widest density is chosen as the ROI of NOH pixels. The last stage of the proposed model is dilation to enlarge the size of the ROI pixels. The best sensitivity, specificity, and balanced accuracy are 69.19%, 98.24%, and 83.72 % respectively. This accuracy is achieved by the mean filter in the enhancement stage.

Keywords—low-pass filtering, high-pass filtering, otsu, connected component, dilation, Nerve Optic Head

I. INTRODUCTION

Nerve Optic Head (NOH) detection is interesting research nowadays [1][2][3][4]. The NOH detection is very important in the classification of the Diabetic Retinopathy (DR) in the retinal image [5]. The very important features are required to classify the DR disease from the retinal image. They are microaneurysms, exudates, and haemorrhage [5]. These features are obtained by eliminating insignificant features, such as blood vessel pixels [6] and NOH pixels. Therefore, the automatically detection of NOH pixels is important in the DR disease classification. The blindness is prevented if the DR disease is detected from the retinal image in the earlier stage.

Many methods are proposed for automatically NOH detection, such as active contour, morphological, pattern recognition, etc. Hybrid method using Hough transform is proposed in our previous research [7]. This method requires more computational time, since many circles are generated to detect the NOH location. This research proposed the simple but robust proposed model, i.e. pixel based segmentation. In the proposed model, the retinal image is processed in the spatial domain. The remainder of this paper consists of the description of the proposed model, the experiment, and its analysis, and the last section is the conclusion.

II. RESEARCH METHOD

Pixel based Segmentation is proposed to detect Nerve Optic Head (NOH) in the retinal image. There are five main stages are proposed in the model, as depicted in Fig. 1.

The objective of the first stage is to enhance the image, remove the noises from the retinal image; therefore the next stage of the detection process is easier. Low pass and high pass filtering are used in the first stage. Through low-pass filtering, the noises are removed, and with high-pass filtering, the quality of the image is sharpened. The second stage is binary thresholding. We use Otsu thresholding to transform the retinal image into a binary image, hence the threshold value is automatically determined. There are many features, and noises pixels are found in the retinal image that are less necessary for the NOH detection process. Therefore, the unimportant features need to be removed, to detect the NOH pixels. The third stage of this research is removing non-object pixels. Pixels in the binary retinal image are clustered using 4-connected component. Clustered pixels with less than a threshold value are removed. The removed pixels are considered as a non-target object. The fourth stage of this research is finding the region of interest (ROI), i.e. the NOH pixels. The 8-connected component is used in this stage to cluster the remaining pixels. The clustered pixels is chosen as the candidate ROI if the clustered pixel has the widest ROI. The last stage of the NOH detection is dilation using morphological operator. The ROI pixel from the previous stage is dilated using the morphological operator.
A. Image Enhancement

The first stage of the proposed model in this research is image enhancement. Two forms of the enhancing method are required at this stage, i.e. low-pass filtering and high-pass filtering. Low-pass filtering is used in this enhancing stage to remove the noises pixels in the retinal image. As seen in Fig. 2, the noises pixels in the retinal image are reduced. The intensity of noises pixels is changed, such that the intensity of the pixels is similar to its neighborhood pixels. Therefore, the result of the low-pass filtering is the smoothed image.

![Low pass filtering on the retinal image. Original retinal image (left) and Smoothed image retinal image (right)](image)

We use three kinds of low-pass filtering, i.e. median filter, mean filter, and 2D Gaussian filter. The median filter is a filtering process to obtain the middle value after the set values are ordered. This value is used to change the filtered pixels. The median filter for the filtering image is shown in Fig. 3. As depicted in the figure, the intensity of the original image is 6, 7, 5, 3, 10, 0, 9, 2, and 4. The sorted pixel is 0, 2, 3, 4, 5, 6, 7, 9, and 10. The middle value of the sorted pixel is 5. This value is used to change pixel with intensity ‘10’. Therefore, the difference intensity of the filtered pixel compare to its neighborhood is small. Meanwhile, the difference intensity of the original image is big. Hence, the filtered image is smoothed image.

![Low-pass filtering process. Original image (left) and filtered image (right)](image)

We use (1) for the mean filter. The number of pixels is used on the Kernel matrix is represented by using M.

$$h(x,y) = \frac{1}{M} \sum_{(x,y) \in N} f(x,y),$$

where $h(x,y)$ is the filtered pixels and $f(x,y)$ is the original pixels, and (x,y) is image pixel on the location x,y.

Kernel matrix is created using (2) for the Gaussian filter.

The retinal image is convolved with the kernel matrix in (3) to sharpen the image.

$$M = \frac{1}{\alpha + 1} \begin{bmatrix} -\alpha & -1 & -\alpha \\ -1 & \alpha & -1 \\ -\alpha & -1 & -\alpha \end{bmatrix},$$

where the value of α is ranged between 0 and 1. In this research, we use 0.6.

The sharpened of the retinal image can be seen in Fig. 4. As seen in the figure, the quality of the image is sharpened. Therefore, the features in the retinal image are clearly shown.

B. Binary Thresholding

The second stage is Binary thresholding to transform the sharpened retinal image into a binary image using (4).

$$I_{binary} = \begin{cases} 0 & \text{if } f(x,y) < T \\ 1 & \text{otherwise} \end{cases},$$

where T is the threshold value.

![High-pass filtering process. Low-pass filtered image (left) and High-pass filtered image (right)](image)

We use Otsu method in the thresholding stage. Therefore, the threshold value is automatically determined. The best threshold value can be determined based on Index (T) of the maximum value of between-class variance. To obtain between class variance, within class variance must be calculated using (5).

$$\sigma_i^2 = W_i \sigma_i + W_j \sigma_j,$$

where between class variance is represented in (6)

$$\sigma_i^2 = \sigma_i^2 - \sigma_w^2 = W_i (\mu_i - \mu)^2 + W_j (\mu_j - \mu)^2 = W_i W_j (\mu_i - \mu_j)^2,$$

where $\mu = \frac{W_i \mu_i + W_j \mu_j}{W_i + W_j}$.

Figure 5 shows the result of the thresholding stage. In the thresholding stage, the pixels that are less than the threshold value is transformed into black pixels. Meanwhile the pixels more than the threshold value is transformed into white pixels. Since, the noise pixels are reduced, and important features are sharpened in the previous stage; therefore, the remaining pixels...
in the binary retinal image are most important pixels in the image, i.e., the NOH pixels.

Fig. 5. Binary thresholding. High-pass filtered image (left) and binary retinal image (right)

C. Removing Non-Objects Pixels

Remaining pixels in the binary retinal image are labeled or clustered into several objects using the 4-connected component method. The purpose of this stage is to find the candidate of target pixels. We use the classical two-scan approach for the labeling process [11].

![Pixel labeling with the 4-connected component. Pixels in the original image (top) and labeled pixels (bottom)](image)

Fig. 6. Pixel labeling with the 4-connected component. Pixels in the original image (top) and labeled pixels (bottom)

![Removing non-object pixels. Binary retinal image (left) and candidate target objects (right)](image)

Fig. 7. Removing non-object pixels. Binary retinal image (left) and candidate target objects (right)

D. Finding ROI

The candidate ROI of NOH is selected from the candidate target objects based on the density of each candidate target objects. As seen in the Fig. 7, there are two candidate target objects with different density size. In this stage, ROI of NOH is chosen based on the widest density size. Following is the algorithm for finding ROI of NOH:

1. Find the width and the height of each candidate target objects from the previous stage
2. Calculate the size of density of each candidate target objects using the width and the height of the grouped pixels
3. Choose the widest density area of the candidate target objects.

Based on the algorithm for finding ROI, there will be remaining one clustered pixel that has the widest density area. Figure 8 shows the extracted ROI using the algorithm. As seen in the figure, there is only one remaining clustered pixels, and this remaining clustered is determined as the ROI of NOH.

![Finding ROI of NOH in the retinal image. Candidate target objects (left) and ROI of NOH(right)](image)

Fig. 8. Finding ROI of NOH in the retinal image. Candidate target objects (left) and ROI of NOH(right)

E. Morphological Dilation

The dilation using morphological operator is required to make the size of the extracted ROI from the previous stage bigger. Therefore, the detected pixel using the proposed model in this research is similar to the original NOH. The dilation process is using (7).

$$D(x, y) = f(x, y) \oplus h(x, y),$$ \hspace{1cm} (7)

where $f(x, y)$ is the extracted ROI image and $h(x, y)$ is the structure element.

In the dilation process, all the pixels in the input image are translated based on each pixel in structure element. All the translated pixels are then combined. Therefore, the size of the object in the input image is bigger after the dilation process. Figure 10 shows the result of the dilation of the extracted ROI from the previous stage.
III. RESULT AND DISCUSSION

We use forty retinal images in the INSPIRE dataset for the experiment of automatic NOH detection using our proposed model. The retinal image and its NOH ground truth are provided in the dataset. Therefore, we can measure our proposed model using sensitivity, specificity, and balanced accuracy as shown in (8), (9), and (10).

\[
\text{Sensitivity} = \frac{\text{TruePositives}}{\text{TruePositives} + \text{FalseNegatives}}, \quad (8)
\]

\[
\text{Specificity} = \frac{\text{TrueNegatives}}{\text{TrueNegatives} + \text{FalsePositives}}, \quad (9)
\]

\[
\text{BalancedAccuracy} = \frac{\text{Sensitivity} + \text{Specificity}}{2}, \quad (10)
\]

Definition of True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) is shown in Table 1.

<table>
<thead>
<tr>
<th>TABLE I. DEFINITION OF TRUE POSITIVES (TP), TRUE NEGATIVES (TN), FALSE POSITIVES (FN), AND FALSE POSITIVES (FP).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected as NOH Pixels</td>
</tr>
<tr>
<td>Detected as Background Pixels</td>
</tr>
<tr>
<td>False Negatives</td>
</tr>
</tbody>
</table>

Sensitivity measures the true detected NOH pixels; meanwhile the specificity measures the true detected background pixels. The more number of TP, TN, and completed with the less number of FP, FN, make the accuracy of sensitivity, specificity, and the balanced accuracy higher. Figure 10 shows the example of detected NOH pixels using our proposed method (left), and the performance accuracy is measured based on the ground truth (right). White pixels are the TP, black pixels are the TN, green pixels are FP, and blue pixels are FN. Sensitivity rate for the retinal image in Fig. 10 is 77.76%, and the specificity rate is 98.31%. The specificity accuracy is high, since the size of the retinal image is large. Therefore, there will be a lot of pixels assigned as the background pixels (TN).

![Fig. 10. Detected NOH pixels (left), Groundtruth of the retinal image (middle), and the accuracy of detected NOH (right).](image)

We compare the effect of the low-pass filtering methods, i.e. mean, median, and Gaussian filter. The size of Disk structure element is 10. The average accuracy of the experiment can be seen in Table 2.

<table>
<thead>
<tr>
<th>TABLE II. AVERAGE ACCURACY FOR THE NOH DETECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

As seen in Table 2, the average accuracy of the different kind of low-pass filtering method is almost similar. This similar accuracy is obtained since the result of the filtering process with various kind of the filtering method is almost similar. Therefore, the detected NOH pixels will be less distinguishable.

IV. CONCLUSION

Pixel based Segmentation is proposed to detect the Nerve Optic Head (NOH) automatically. All the stages in the proposed model are based on the pixel based operation. They are low-pass and high-pass filtering, binary thresholding, labeling or clustering the pixels using the connected component of the pixels, and finally the dilation using mathematical morphology. The various low-pass filtering method are compared in the experiment. They are the median filter, mean filter, and Gaussian filter. The low-pass filter is important in the enhancement of the retinal image stage. Since, the low-pass filter can reduce the noise pixels. The experiments showed that the accuracy of the different of low-pass filtering method is insignificantly different, i.e. 83.72%, 83.45%, and 81.22% for the mean, median, and Gaussian filter respectively. The less different average accuracy for the three filtering methods is obtained, since the result of each filtering process is less distinguishable. Therefore, we can use one of the filtering methods for the image enhancement in automatically NOH detection. For the future research, various structure element and size of the structure element is proposed to achieve higher rate balanced accuracy.

REFERENCES

[3] Angel Suero, Diego Marin, E. Manuel, Gegundez-Arias, and Jose M. Bravo, "Locating the Optic Disc in Retinal..."

