Efisiensi dan Inovasi Teknologi untuk Meningkatkan Daya Saing Industri Nasional
DAFTAR ISI

Halaman Judul .. i
Kata Pengantar ... iii
Susunan Panitia ... v
Daftar Isi ... vii

KELOMPOK A – ERGONOMI DAN DESAIN PRODUK

IENACO 01 – Wyke Kusmasari, Dadi Cahyadi, dan Wahyu Oktri Widyarto
PERANCANGAN INSTURMEN PERFORMANCE ASSESSMENT PADA SISTEM
KESELAMATAN KERJA BERBASIS METODE EMPLOYEE SAFETY
PERFORMANCE SURVEY .. 1

IENACO 02 - Muhammad Busyairi, La Ode Ahmad S. Tosungku, dan Adytmral Patibong
PENGARUH KEBISINGAN PEMBANGKIT LISTRIK TENAGA DIESEL TERHADAP
KELUHAN GANGGUAN PENDENGARAN KARYAWAN (Studi Kasus : PT. PLN
(Persero) Wilayah Kaltim Sektor Mahakam PLTD X Samarinda) .. 12

IENACO 03 – Teguh Aprianto dan Hari Purnomo
DESAIN PENCETAK DAN PENGEPRES TAHU PADA UKM TAHU MENGGUNAKAN
METODE MACROERGONOMIC ANALYSIS AND DESIGN (MEAD) .. 22

IENACO 04 - Indah Pratiwi, Linda Aprilia, dan Cita Zulfa
EVALUASI POSTUR KERJA PENGRAJIN GERABAH MENGGUNAKAN RULA DAN
REBA .. 29

IENACO 05 - Ratih Setyaningrum dan Heddy Shri Ahimsa-Putra
PERKEMBANGAN DESAIN PRODUK BERBASIS BUDAYA DI INDONESIA 36

IENACO 06 - Agus Hasan Hidayat dan Hari Purnomo
DESAIN PENGERING KERUPUK MENGGUNAKAN METODE ERGONOMI
PARTISIPATORI .. 45

IENACO 07 - Fakhrina Fahma, Renio Wulan Damayanti, dan Desy Meilina Fulani
PENGEMBANGAN ALAT PEMOTONG KUNYIT UNTUK SIMPLISA DI KLASER
BIOFARMAKA KARANGANYAR .. 55

IENACO 08 - Sri Hartini, Dahliana Agustini, dan Nia Budi P
PERANCANGAN PRODUK SIKAT GIGI BERBAHAN LIMBAH KAYU MEBEL
DENGAN VALUE ENGINEERING .. 64

IENACO 09 - Riski Wahyuniardi, dan Yani Syafei
ANALISIS BEBAN KERJA KOORDINATOR DAN MANAGER MENGGUNAKAN
METODE NASA-TLX .. 71

vii
IENACO 10 - Muchlisin Anis, Lyly Sofwa Intani, dan Etika Muslimah
PERBAIKAN METODE KERJA OPERATOR MELALUI ANALISIS MUSCULOSKELETAL DISORDERS (MSDs) .. 79

IENACO 11 - Paulus Sukapto, Harjoto Djiojoshubroto dan Yunanto
PERANCANGAN SISTEM KESELAMATAN DAN KESEHATAN KERJA BERDASARKAN JOB SAFETY ANALYSIS (JSA) DAN PERHITUNGAN RISK SCORE (STUDI KASUS PADA PT. Primarindo) .. 85

IENACO 12 - Wahyu Susihono
EVALUASI BEBAN KERJA DAN KELUHAN MUSCULOSKELETAL PEKERJA DI PERUSAHAAN PENGECORAN LOGAM X SISTEM DAPUR INDUKSI .. 91

IENACO 13 - Wahyu Susihono
ANALISIS KELELAHAN KERJA, KEBOSANAN KERJA, KEPUASAN KERJA SEBAGAI DASAR REKOMENDASI PERBAIKAN FISIOLOGI PEKERJA .. 99

IENACO 14 - Hari Purnomo
PENGUKURAN ANTROPOMETRI TANGAN USIA 18 SAMPAI 22 TAHUN KABUPATEN SLEMAN YOGYAKARTA .. 106

KELOMPOK B – SISTEM PRODUKSI DAN PENGENDALIAN KUALITAS

IENACO 15 - H Harisupriyanto
PENINGKATAN KUALITAS SPORT INDUSTRY UNTUK MEMAKSIMUMKAN DAYA GUNA LAPANGAN .. 113

IENACO 16 - H Harisupriyanto
PENERAPAN LEAN SIX SIGMA CONCEPT UNTUK PERBAIKAN LINI PRODUKSI .. 120

IENACO 17 - Ig. Joko Mulyono dan Maria Christine
PERBAIKAN TINGKAT RASA DAN KEKENYALAN PADA JELLY DENGAN MENGGUNAKAN METODE DESAIN EKSPERIMEN .. 127

IENACO 18 - Widhi Yoga Sarjanto dan Herianto
PENGEMBANGAN PROTOTYPE ARM ROBOT DENGAN ORIGINAL SERVO MOTOR .. 133

IENACO 19 - Avin Wimar Budystomo, Bayu Seto Lambang S, dan Kholid Cinidra R
PENGUJIAN KUALITAS SISTEM PAKAR DETEKSI KERUSAKAN MESIN SEPEDA MOTOR NON MATIC DENGAN MENGGUNAKAN METODE MC CALL .. 141

IENACO 20 - Muhammad Ghifary Meidika, Haris Rachmat, dan Denny Sukma Eka A
PERANCANGAN USER REQUIREMENT SPECIFICATION (URS) SISTEM OTOMATISASI PROSES BOTTLING PLANT PEMBUATAN AIR MINUM DALAM KEMASAN BOTOL 330 ML DAN 600 ML DI PT. XYZ .. 147
IENACO 21 - Dony Satriyo Nugroho, Haris Rachmat, dan Denny Sukma Eka Atmaja
PERANCANGAN SISTEM OTOMATISASI TERINTEGRASI BOTTLING PLANT AIR MINUM DALAM Kemasan (AMDK) MENGGUNAKAN PROGRAMMABLE LOGIC CONTROLLER DI PT XYZ

IENACO 22 - Robby Indra Setiaawan, Haris Rachmat, dan Denny Sukma Eka Atmaja
PERANCANGAN PEMANTAUAN SISTEM OTOMATISASI PENGOLAHAN COKELAT COUVERTURE SONJA CHOCOLATE FACTORY MENGGUNAKAN SCADA DILENGKAPI FASILITAS RECIPE MANAGER

IENACO 23 - Harry Ray Prasetya, Haris Rachmat, dan Denny Sukma Eka Atmaja
PERANCANGAN SISTEM OTOMATISASI TERITEGRASI PENGOLAHAN COKELAT COUVERTURE SONJA CHOCOLATE FACTORY BERBASISKAN JARINGAN LOKAL KABEL MENGGUNAKAN PROGRAMMABLE LOGIC CONTROLLER

IENACO 24 - Rusdi Rahman, Haris Rachmat, dan Denny Sukma Eka Atmaja
PERANCANGAN MONITORING, CONTROLLING, EVENT AND DATA LOGGING SYSTEM SECARA REALTIME UNTUK OTOMATISASI PENGENDALIAN PROSES BOTTLING PLANT AIR MINUM DALAM Kemasan (AMDK) DI PT XYZ

IENACO 25 - Cyrilla Indri Parwati
MINIMASI NG BINTIK PADA PROSES PENGEÇTAN PART FRONT FENDER IPA RED MET 7 DENGAN PENDEKATAN SIX SIGMA DI PT. ABC

IENACO 26 - Qurtubi
INTEGRASI BALANCED SCORECARD DAN PROCESS BASED FRAMEWORK UNTUK REKAYASA ULANG PROSES BISNIS

IENACO 27 - Ratna Ekawati, Asep Ridwan, dan Gani Antonio
USULAN PENINGKATAN PELAYANAN PUSKESMAS MENGGUNAKAN KONSEP LEAN SIGMA SERVICES

IENACO 28 - Anmisa Kesy Garside dan Faraningrum Restiana
PENGURANGAN WASTE DENGAN MENGGUNAKAN PENDEKATAN LEAN PADA SISTEM DISTRIBUSI DI PT SUPRALITA MANDIRI

IENACO 29 - Atep Afia Hidayat, Muhammad Kholil, dan Dedhy Windhiarto
ANALISA DEFECT TIRE DARI CLAIM CUSTOMER ORIGINAL EQUIPMENT MANUFACTURING (OEM) PADA PT. GAJAH TUNGGAL Tbk

IENACO 30 - R. Bagus Yosan, Muhammad Kholil, dan Purwanto
PENGUKURAN PRODUKTIVITAS PERUSAHAAN MENGGUNAKAN METODE OBJECTIVE MATRIX

ix
IENACO 31 - Hasbullah, Muhammad Kholil, dan Trianioro
ANALISIS KUALITAS PRODUK PENYIMPANAN BAHAN BAKAR MINYAK
(SOLAR) DI DALAM TANKI JENIS DOME ROOF INTERNAL FLOATER DENGAN
METODEFMEA PADA PT.ABC.. 223

IENACO 32 - Much. Djunaidi dan Rachmad Adi Nugroho
PENGENDALIAN KUALITAS PADA MESIN INJEKSI PLASTIK DENGAN METODE
PETA KENDALI PETA P DI DIVISI TOSSA WORKSHOP.......................... 231

IENACO 33 - Muhammad Kholil dan Suryanto
INTEGRASI METODE QFD DAN DFMEA DALAM PERBAIKAN DESAIN MOLD
PADA MOLD BODY SEALPACK DI PERUSAHAAN INJECTION.................... 239

IENACO 34 - Heri Widiananto, Ahmad Atif Fikri dan Muslim Mahardika
MONITORING KEAUAN PAHAT MENGUNAKAN ARTIFICIAL NEURAL
NETWORKS PADA PROSES TURNING... 248

IENACO 35 - Moh Fawaid
PENGUNAAN SERBUK IPOMOEA CARNEA PADA PROSES PEMBUATAN
ALTERNATIF BAHAN GENTENG KOMPOSIT.................................. 257

IENACO 36 - Oesman Rafib
ANALISIS PENERAPAN METODE 5R PADA INDUSTRI KERAJINAN SERAT ALAM
MENUJU PENCAPAIAN SERTIFIKASI CE MARK.................................... 265

IENACO 37 - Rigaanto Fitriadi, Ahmad Kholid Alghofari, dan Gancang Bayu Kuncoro
MODUL SISTEM KONTROL INDUSTRI MENGUNAKAN PLC........................ 272

IENACO 38 - Siti nandiroh dan Eko Winardi
ANALISIS PENGENDALIAN KUALITAS PRODUK SOLAR DENGAN
MENGUNAKAN METODE STATISTICAL QUALITY CONTROL (SQC)........... 281

IENACO 39 - Rachmad Hidayat
IMPROVEMENT OF PRODUCTION FACILITY LAYOUT WITH SYSTEMATIC
LAYOUT PLANNING (SLP) ALGORITHM.. 289

IENACO 40 - Hafidh Munawir dan Dani Yunarto
ANALISA PENYEBAB KERUSAKAN MESIN SIZING BABA SANGYO KIKAI
DENGAN METODE FMEA DAN LTA (studi kasus di PT Primatexco Indonesia) 296

IENACO 41 - Shanty Kusuma Dewi dan Tatok Dwi Sartono
PENDEKATAN LEAN THINKING UNTUK PENGURANGAN WASTE PADA PROSES
PRODUKSI PLASTIK PE.. 303
KELOMPOK C – OPTIMISASI DAN SISTEM INFORMASI MANAJEMEN

IENACO 42 - Agiani, Muchammad Febreyhan, dan Rayinda Pramudiyta Soesanto
PERANCANGAN SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN LOKASI PERUMAHAN DENGAN MENGGUNAKAN METODE DELPHI DAN FACTOR RATING DI SEKITAR TELKOM UNIVERSITY

IENACO 43 - Ayu Permata Shabrina P, M. Shantya Utama, Rizki Nasibah Rachmania, dan Rayinda Pramudiyta Soesanto
PERANCANGAN SISTEM PENDUKUNG KEPUTUSAN DAN SISTEM INFORMASI GEOGRAFIS PEMBERIAN BANTUAN KORBAN BANJIR DI KABUPATEN BANDUNG SELATAN

IENACO 44 - Didiet Sudiro Resobowo, Lahar Baliwangi, Ketut Buda Artana, dan AAB Diniariyana
SIMULASI DINAMIKA SISTEM PADA SISTEM BAHAN BAKAR MOTOR INDUK: SEBUAH ANALISA SENSITIVITAS KEMAMPUAN ANAK BUAH KAPAL (ABK) TERHADAP BIAYA PEMELIHARAAN DAN KEANDALAN SISTEM

IENACO 45 - Hery Suliantoro, Susatyo Nugroho, dan Fany Juannita
PENENTUAN STRATEGI PEMBELIAN BAHAN BAKU KRITIS MELALUI MODEL KRALJC'S MATRIX PURCHASING PORTOFOLIO (STUDI KASUS: PT NYONYA MENEER SEMARANG)

IENACO 46 - Anauta Lungiding, AR, Djaugar Manfaat
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN STRATEGI PENGEMBANGAN INDUSTRI GALANGAN KAPAL TRADISIONAL DI MADURA MENGGUNAKAN METODE SWOT DAN F-AHP

IENACO 47 - Santoso, Yoanes Elias
PENENTUAN JOINT ECONOMIC LOT SIZE PADA PEMASOK KURSI LIPAT DAN PEMBELINYA DENGAN PEMINTAAN PROBABILISTIK DAN LEAD TIME VARIABEL

IENACO 48 - Muhammad Adha Ilhami
PENGEMBANGAN MODEL PENJADWALAN DINAMIS FLEXIBLE FLOW SHOP 3-STAGES UNTUK MEMINIMASI WEIGHTED TARDINESS DENGAN SISTEM LELANG

IENACO 49 - Cholil Jamhari, Agus Kiryanto, dan Sri Huning Anwariningihs
SISTEM PAKAR DIAGNOSIS KERUSAKAN SEPEDA MOTOR NON MATIC

IENACO 50 - Darsini, Budi Wibowo
OPTIMASI PELAYANAN PERBAIKAN KENDARAAN BERMOTOR DENGAN MODEL ANTRIAN M/M/C
IENACO 51 - Enty Nur Hayatia dan Antoni Yohannes
PENCARIAN RUTE TERPENDEK MENGGUNAKAN ALGORITMA GREEDY

IENACO 52 - Pudji Santoso, Ketut Buda Artana, M.Jsa Irawan, A.A Masroeri, dan AAB Dinariyana
IMPLEMENTASI BINARY GENETIC ALGORITHM (BGA) SEBAGAI KONSEP PENGAMBILAN KEPUTUSAN ATAS MODEL PERTAHANAN WILAYAH LAUT INDONESIA

IENACO 53 - Drajit Indrajaya
STRATEGI MANAJEMEN RANTAI PASOKAN PADA INDUSTRI MANUFAKTUR DENGAN PRODUKSI TERBATAS

IENACO 54 - Hari Prasetyo
PENDEKATAN SEDERHANA UNTUK FORMULASI MODEL UKURAN LOT GABUNGAN SINGLE-VENDOR MULTI-BUYER

IENACO 55 - Imron Rosyadi
ANALISA PENGERUH PEMANASAN AWAL BAHAN BAKAR SOLAR TERHADAP PERFORMA DAN KONSUMSI BAHAN BAKAR PADA MESIN MOTOR DIESEL SATU SILINDED

IENACO 56 - Lely Herliina, Ary Kurniati, dan Bobby Kurniawan
PENJADWALAN PRODUK PAINTED DI PT. X DENGAN ALGORITMA BRANCH AND BOUND UNTUK MEMINIMASI MEAN FLOW TIME

IENACO 57 - Wessni Anggraini dan Hendri
SIMULASI MODEL ANTRIAN MULTIPLE CHANNEL SINGLE PHASE PADA SISTEM PELAYANAN KASIR FIRST COME FIRST SERVE (STUDI KASUS: GIANT HYPERMARKET PANAM PEKANBARU)

IENACO 58 - Suhendar, Alimuddin, dan Ika Wanti Tussyani
OPTIMASI PEMBAGIAN BEBAN PLTU SURALAYA MENGGUNAKAN ANT COLONY OPTIMIZATION

IENACO 59 - Ervin Widodo
THE STUDY ON LEAD TIME IMPACT TO DUAL-CHANNEL SUPPLY-CHAIN FINANCIAL PERFORMANCE: AN INDONESIAN CASE

IENACO 60 - Ida Nursanti
PENENTUAN URUTAN PERAKITAN PRODUK DENGAN LIAISON-SEQUENCE ANALYSIS

IENACO 61 - Ahmad Kholid Alghofari, Muchlisun Anis, dan Fendi Nugroho
PERANCANGAN SISTEM INFORMASI MANAJEMEN PENGELOLAAN AKADEMIK PADA PROGRAM STUDI DI INSTITUSI PENDIDIKAN PENGURUAN TINGGI X
KELOMPOK D – SISTEM USAHA DAN PENGAMBILAN KEPUTUSAN

IENACO 62 - Suranto
PENINGKATAN KEMAMPUAN SKILL LULUSAN MELALUI PENDIDIKAN BERBASIS INDUSTRI (INDUSTRIAL BASED PROGRAM) SEKOLAH VOKASI UNIVERSITAS MUHAMMADIYAH SURAKARTA ... 469

IENACO 63 - Benny Suhendro Tambun, Raga Jananuraga, Putu Arya Mahatmavidya, dan Rayinda Pramuditya Soesanto
PERANCANGAN SISTEM INFORMASI BERBASIS GEOGRAFIS UNTUK MENDUKUNG KEPUTUSAN PEMILIHAN TEMPAT MAKAN DI KAWASAN PENDIDIKAN TELKOM UNIVERSITY DENGAN MENGGUNAKAN METODE FACTOR RATING DAN METODE DELPHI ... 474

IENACO 64 - Sutrisno Badri
ANALISIS KESISTEMAN PADA PELAKU AGROINDUSTRI KELAPA SAWIT .. 484

IENACO 65 - Abdul Rahim dan Haikal Karana
Karakteristik Operasional Usaha Mikro di Kota Medan .. 492

IENACO 66 - Haikal Karana
Pola Penyebaran Usaha Mikro di Kota Medan .. 510

IENACO 67 - Eka Syafitri, Yusuf Priyandari, dan Yuniaristanto
PERANCANGAN ULANG PROSES BISNIS DENGAN METODE MODEL-BASED AND INTEGRATED PROCESS IMPROVEMENT (MIPI) DI CV. INDOGRAPHIA PRIMA UTAMA .. 521

IENACO 68 - Lukmandono, Alva Edy Tontowi, Andi Sudiarso, dan Hargo Utomo
Penentuan Kriteria Daya Saing Industri Makanan Minuman dan Tembakan Dengan Pendekatan AHP .. 527

IENACO 69 - Ira Setyaningsih
Analisis Faktor Penghambat Kebahagiaan Mahasiswa Menjadi Entrepreneur .. 535

IENACO 70 - Sutrisno Badri dan Endehin Sugandiko
Analisis Sensitivitas Harga Bahan Baku Impor Implikasinya Terhadap Kebelanjutan Usaha Tahu-Tempe (Studi Empirik Pada Industri Kecil Tahu-Tempe di Jatinom) .. 543

IENACO 71 - Agus Mansur dan Edi Syaputra
Analisis Regresi Multivariat Pada Intention To Buy Berdasarkan Efektivitas Pemasaran .. 549
IENACO 72 - Firman Bani Albar, Angga Wisudianto, Ghaida Fatcha Mubiena, dan Agus M
DESAIN STRATEGI PENGEMBANGAN UKM DENGAN KOMBINASI METODE
BENCHMARKING DAN BLUE OCEAN STRATEGY ... 555

IENACO 73 - Mega Metta Ritajeng, Achmad Bahauddin, dan Putro Ferro Ferdinant
IDENTIFIKASI INDIKATOR KINERJA GREEEN SUPPLY CHAIN MANAGEMENT
DI INDUSTRI BAJA HILIR ... 563

IENACO 74 - Ratih Setyaningrum dan Alva Edy Tontowi
STUDI PURCHASING POWER PARITY & COST OF LIVING INDICATOR SEBAGAI
ACUAN PEMENUHAN KEBUTUHAN PRODUK BERBASIS BUDAYA 571

IENACO 75 - Retno Rusdijjati dan Riana Mashar
EFEKTIVITAS METODE SEFT GUNA MEMINIMALISASI KEBIASAAN MEROKOK
DI KALANGAN PEKERJA HOME INDUSTRY 578

IENACO 76 - Pipit Sari Puspitorini dan Very Effendy
SUPPLIERS SELECTION MODEL USING FUZZY PRINCIPAL COMPONENT
ANALYSIS ... 585

IENACO 77 - Yandra Rahadian Perdana
PERBAIKAN KINERJA SUPPLY CHAIN DENGAN PENDEKATAN SUPPLY CHAIN
OPERATION REFERENCE (SCOR) DAN FUZZY ANALYTICAL HIERARCHY
PROCESS (AHP) .. 594

IENACO 78 - Nia Budi Puspitasari
ANALISIS PEFFRENSI KONSUMEN TERHADAP PRODUK COCA-COLA, PEPSI
DAN BIG COLA DI KOTA SEMARANG DENGAN ANALISIS KONJOIN 603

IENACO 79 - Didik Achmadi
SUPPLY CHAIN RISK MITIGATION USING SUPPLY CHAIN RISK MANAGEMENT
(SCRM) APPROACH ... 611

IENACO 80 – Dian Pritasari dan Etila Muslimah
PERANCANGAN NAMPAN TRANSFER STRETCHER 31209 UNTUK MENURUNGI
KECACATAN PRODUK (STUDY KASUS: PT MEGA ANDALAN KAWASAN) 618

xiv
IMPROVEMENT OF PRODUCTION FACILITY LAYOUT WITH SYSTEMATIC LAYOUT PLANNING (SLP) ALGORITHM

Rachmad Hidayat

Industrial Engineering Department, University of Trunojoyo Madura, Indonesia
PO BOX 2 Kamal Bangkalan
Email: hidayat.utm@gmail.com

Abstract

The purpose of this study is to rearrangement of production floor layout of facilities so as to minimize the distance and material handling costs at the time of production. The study was conducted on a company that is Flow Shop. The layout of the facility is based on the flow of the production process and product produced more than 1 type by using different machines. Placement facility layout resulting in irregular distances and large material handling costs. Factor plant layout will greatly affect the timeliness in each process. Sets the layout engine in such a way, is expected to reduce waiting time, and cost of the process of moving goods (material handling). The smaller the range of material handling, better layout. So that the production process will remain smooth and controlled until the last process. In this study, the total distance of the initial layout compared to the proposed layout there is a reduction in material handling distance. Material handling costs also decreased when compared to the initial layout with the proposed layout. In this study, the proposed layout which has been designed to be implemented in the company with socialization to the management about the advantages of the proposed layout, including the distance and material handling costs smaller. The design layout can still be developed with computer simulations to design a model of the real system with the goal of understanding the behavior of the system and evaluate it to improve system performance. The production process will get optimal results when supported production planning and control mature. Other factors are also very important to note in order to obtain optimal results in a production process is taking into consideration the layout of the production machine. SLP method could form the answer to minimize the distance and cost of material handling.

Kata kunci: production process, layout, material handling, SLP

I. INTRODUCTION

Manufacturing systems developed towards the achievement of high productivity. Directions are becoming increasingly widespread, due to the achievement of high productivity, manufacturing systems were also developed adaptability to change product specifications are made as well as its availability (Gopalakrishnan et. al., 2003). Dynamic enough demand for the product will be made an issue early. This demand dynamics associated with the uncertainty of the arrival of the request, the amount of demand, and the variation of the product. Consumers are also demanding the reliability of the product and the corresponding tolerance of the product. An increasing number of requests tend to lead to an increase in product variety, while the number of requests every stuff is getting smaller. A large variety of products resulted in more and more variations of components that have to be made (Taho et. al., 2000). Manufacturing systems required to be able to process a wide variety of components with the relatively small lot sizes. Preparation of layout of machinery and equipment which is usually called the plant layout is the basis of the design of manufacturing systems (Ram and Prashant, 2012).

The development of manufacturing systems have a tendency (Black, 1991:25): (1) Increased production and a reduction in the amount of variation in production. (2) The need for a careful tolerance continuously increasing. (3) The increase in the variation of raw materials, mixed materials with properties better, it will eventually require new manufacturing processes. (4) Cost of materials including the transfer of materials and energy, the biggest part of the cost of production,
whereas direct labor costs only 5 to 10% of the total cost and tends to change continuously. (5) Reliability of product will rise in response to the excess amount of the corresponding product reliability. (6) The time between concept design and manufacture of products will be reduced through the support of simultaneous engineering. (7) The global market should be served with a new global product. All of these challenges can be answered by making the design layout of machinery and equipment, must be considered a factor flexibility, in the sense of being able to adapt to environmental changes according to the demands and tastes of consumers.

Plant layout is a procedure for setting the plant facilities to support the smooth production process. Settings by utilizing the existing area to put the engine and supporting production facilities that have an impact on the smooth motion of the material displacement. It is regulated and the engine department. In addition to these settings, the selection of one type of facility layout is also affected by production volume and product variety. The production process is a series of process of changing raw materials into semi-finished products or finished products. The production process will get optimal results when supported production planning and control mature. It also needs to be supported by the experienced labor factor, in the run up to the production of machine parts inspection. Other factors are also very important to note in order to obtain optimal results in a production process is taking into consideration the layout of the production machines (Dork and Gualman, 2004). In general, the layout of the planned factory will also determine the efficiency and in some cases will also maintain the viability or success of the performance of a production process. Because production activity in an industrial should normally last long with the facility layout is not always changing, so any mistakes are made in the planning of the layout will cause losses that are not small. Material handling systems are less systematic also be a big problem and disrupting the production process thereby affecting the overall system. (Giuseppe et al., 2012).

2. METHODS
2.1 Systematic Layout Planning (SLP)

The steps in planning SLP is (Wijnjsoebroto, 2003), (Chien, 2004), (Natthapong, 2012): (1) Material Flow is the depiction of the flow of material in the form of OPC or FPC by using ASME symbols. This step will provide a basic foundation of how the layout of production facilities should be arranged in order of the product creation process. Especially applicable to the type of Product Layout. Here depiction trip of an area (work station) to another area on the basis of production volumes (2) Activity Relationship that indicates the desired degree of closeness of the department and work area in a factory. ARD describes the layout and analyze the relationship between departments or facilities that do not work can be demonstrated quantitatively by analysis of material flow. (3) Relationship diagrams is Determining the layout of the facilities based on the flow of work products (product flow) and relationship activities, regardless of the extent of the area. The initial step to define the layout of production facilities as well as possible based on quantitative and qualitative considerations. (4) and (5) step adjustment to the area required and available. The need in this area is strongly influenced by installed capacity (number of machines, equipment, and other production facilities to be accommodated). Space available will be greatly influenced by the existing land and building. (6) Space Relationship Diagram that takes into account the needs for size of the area to existing facilities as well as the wide availability of the SRD was made, namely the determination of facility layout with attention to the room. (7) and (8) Modifying Practical consideration and modification Limitation is taking account of the building, the column layout, material handling systems and a causeway. (9) Alternate Layout Plan yatu make alternatives proposed layout can then be taken to the best alternative based on predetermined benchmarks. And (10) Decision alternatives, implementation and evaluation.

2.2 Computerized Relative Allocation of Facilities Technique

CRAFT program is an example of the type of heuristic technique that is based on the interpretation of the Quadratic Assignment program layout process. (Sherali, 2003). The program is also looking for a design optimum layout by improving gradually. CRAFT evaluate layout by means of exchanging the location of the department. Type of exchange can occur: (1) Pair-Wise Interchanges. (2) Three-Way Interchanges. (3) Pair Wise allowed by Three Way Interchanges. (4) The best of the Pair Wise or Three Way Interchanges. (Meller, 2007).
3. RESULT AND DISCUSSION

![Diagram of LVP department layout]

Figure 1. Initial layout of LVP department

Table 1. The distance between the machines in the production process of the initial layout

<table>
<thead>
<tr>
<th>Machine 1</th>
<th>Machine 2</th>
<th>Distance (Milepermin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>Rotary</td>
<td>10</td>
</tr>
<tr>
<td>Rotary</td>
<td>Dryer</td>
<td>5</td>
</tr>
<tr>
<td>Dryer</td>
<td>Cutting Veneer</td>
<td>16</td>
</tr>
<tr>
<td>Pony</td>
<td>Boiling</td>
<td>13</td>
</tr>
<tr>
<td>Boiling</td>
<td>Slicer</td>
<td>8</td>
</tr>
<tr>
<td>Slicer</td>
<td>Dryer</td>
<td>57</td>
</tr>
<tr>
<td>Dryer</td>
<td>RH Shin</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>119</td>
</tr>
</tbody>
</table>

3.1 Material Handling Cost

3.1.1 Labor Costs

The company has 41 operators in LVP departments with different wages. Total of all wage of Rp 81,605,915. With the operator wage per day Rp 1,990,388.

3.1.2 Cost Forklift

Cost Depreciation

Initial price = Rp. 20,000,000.
Age Economical = 5 Years
Residual value = Rp. 8,000,000.

The company has 3 forklifts and forklift hire 5. But in LVP department only uses 2 forklift.

By using a model of straight line depreciation calculation, then the depreciation cost is obtained as follows:

\[
\text{purchase cost} - \text{residual value} = \frac{\text{economic lives}}{\text{years}} (\text{Rp.} 20,000,000 - \text{Rp.} 8,000,000)
\]

\[
= \frac{\text{Rp.} 12,000,000}{5 \text{ years}} = \text{Rp.} 2,400,000 \text{ per year}
\]

\[
= \text{Rp.} 13,333 \text{ / day}
\]

3.1.3 Fuel Cost

The type of fuel used is diesel forklift with daily fuel needs as much as 30 liters per day, with the price of Rp 4,000/liter. So the total cost of fuel/day = Rp. 4,000 x 30 x 2 = Rp 240,000/day.

291
3.1.4 Total Cost For Forklift
Rp 13,333 + Rp 240,000 = Rp 253,333 / day
So material handling cost/day is: Rp 1,990,388 + Rp 253,333 = Rp 2,243,721 / day.

3.1.5 Material Handling Cost/meter
Calculation of distance above the material handling can be calculated material handling cost/meter:

\[
\frac{\sum \text{Material cost}}{\sum \text{Material Handling distances}} = \frac{\text{Rp 2,243,721}}{119} = \text{Rp 18,855/meter}
\]

From the calculation of the cost of material handling over the total material handling cost of LVF department is Rp 2,243,745 with details separat Table 2.

Table 2. The total cost of material handling

<table>
<thead>
<tr>
<th>Production Flow</th>
<th>Mileage (m)</th>
<th>Material Handling cost (Rp/m)</th>
<th>Total cost of Material Handling (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling – Rotary</td>
<td>10</td>
<td>18855</td>
<td>188550</td>
</tr>
<tr>
<td>Rotary – Dryer</td>
<td>5</td>
<td>18855</td>
<td>94275</td>
</tr>
<tr>
<td>Dryer – Cutting Veener</td>
<td>16</td>
<td>18855</td>
<td>301680</td>
</tr>
<tr>
<td>Pony – Boiling</td>
<td>13</td>
<td>18855</td>
<td>245115</td>
</tr>
<tr>
<td>Boiling – Slicer</td>
<td>8</td>
<td>18855</td>
<td>150840</td>
</tr>
<tr>
<td>Slicer – Dryer</td>
<td>57</td>
<td>18855</td>
<td>1074735</td>
</tr>
<tr>
<td>Dryer – RH Shin</td>
<td>10</td>
<td>18855</td>
<td>188550</td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td></td>
<td>2243745</td>
</tr>
</tbody>
</table>

3.1.6 Total Closeness Rating (TCR)
Calculation of total closeness Rating obtained by quantifying the relationship between departments. Given the activity Relation Matrix as shown in Table 3, the quantification can be done with a value corresponding to table 4. After all the values in the matrix close relationship quantified, then the sum to determine the value of total closeness Rating each department. The results are shown in Table 5.

Table 3. Activity Relationship Matrix

<table>
<thead>
<tr>
<th></th>
<th>Boiling</th>
<th>Rotary</th>
<th>Dryer</th>
<th>Cutting Veener</th>
<th>Pony</th>
<th>Slicer</th>
<th>RH Shin</th>
<th>Boilng Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>A</td>
<td>U</td>
<td>U</td>
<td>A</td>
<td>O</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Rotary</td>
<td>A</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Dryer</td>
<td>U</td>
<td>A</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Cutting Veener</td>
<td>U</td>
<td>A</td>
<td>U</td>
<td>U</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>U</td>
</tr>
<tr>
<td>Pony</td>
<td>A</td>
<td>U</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Slicer</td>
<td>O</td>
<td>U</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>RH Shin</td>
<td>U</td>
<td>I</td>
<td>A</td>
<td>U</td>
<td>I</td>
<td>O</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Boiling Support</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

Table 4. Quantitative value

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>O</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

292
Table 5. Total Closeness Rating

<table>
<thead>
<tr>
<th>Boiling</th>
<th>Rotary</th>
<th>Dryer</th>
<th>Cutting-V</th>
<th>Pony</th>
<th>Slicer</th>
<th>RH-Shin</th>
<th>Enginex</th>
<th>TCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>32</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>118</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>32</td>
<td>4</td>
<td>2</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>32</td>
<td>2</td>
<td>8</td>
<td>44</td>
<td>2</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

The total layout area of production floor LVP Departemen of 5,896 m². Each box will represent an area of 3.8 m, so it needs a box for each department can be calculated and obtained the results as shown in Table 6.

Table 6. Space requirements for each machine

<table>
<thead>
<tr>
<th>Boiling</th>
<th>Rotary</th>
<th>Dryer</th>
<th>Cutting-V</th>
<th>Pony</th>
<th>Slicer</th>
<th>RH-Shin</th>
<th>Engine x</th>
<th>Space Requirements</th>
<th>Box(es) Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>80</td>
<td>118</td>
<td>72</td>
<td>78</td>
<td>60</td>
<td>58</td>
<td>14</td>
<td>840</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>336</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>336</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>266</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>910</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>252</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1582</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>966</td>
<td>269</td>
</tr>
</tbody>
</table>

3.2 Determination of Proposed Layout Using CRAFT

Final Layout for Departemen LVP
12-11-2011 21:26:04
Objective Criterion: Minimization

Distance Measure: Rectilinear
Total Contribution = 26857.84
*Iterations: 1 CPU seconds: 57.33594

Figure 2. Schematic layout of the proposed using CRAFT
3.2.1 Distance and Material Handling Cost Proposed Layout

Distance calculation is done by measuring the distance the material flow path on the production and assembly activities. Measurements were made of the distance between the center of the central departments of other departments. Calculation of distances between departments on the proposed layout can be seen in the Table 7.

![Schematic layout of the proposed facility](image)

Table 7. Distance between the trajectory of the proposed facility layout work

<table>
<thead>
<tr>
<th>Production Flow</th>
<th>Mileage (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling – Rotary</td>
<td>10</td>
</tr>
<tr>
<td>Rotary – Dryer</td>
<td>5</td>
</tr>
<tr>
<td>Dryer – Cutting Veener</td>
<td>9</td>
</tr>
<tr>
<td>Pony – Boiling</td>
<td>13</td>
</tr>
<tr>
<td>Boiling – Slicer</td>
<td>8</td>
</tr>
<tr>
<td>Slicer – Dryer</td>
<td>57</td>
</tr>
<tr>
<td>Dryer – RH Shin</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
</tr>
</tbody>
</table>

The analysis showed that the displacement distance on the layout of the proposed is 114 meters, 5 meters distance closer than ever before. While the total material handling costs in the proposed layout of Rp 2,149,470 or the amount of Rp. 94,275 less of the previous material handling cost.

Table 8. The total cost of material handling layout proposal

<table>
<thead>
<tr>
<th>Production Flow</th>
<th>Mileage (m)</th>
<th>Material Handling</th>
<th>Total Cost Material Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling – Rotary</td>
<td>10</td>
<td>18855</td>
<td>188550</td>
</tr>
<tr>
<td>Rotary – Dryer</td>
<td>5</td>
<td>18855</td>
<td>94275</td>
</tr>
<tr>
<td>Dryer – Cutting Veener</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pony – Boiling</td>
<td>13</td>
<td>18855</td>
<td>169695</td>
</tr>
<tr>
<td>Boiling – Slicer</td>
<td>8</td>
<td>18855</td>
<td>245115</td>
</tr>
<tr>
<td>Slicer – Dryer</td>
<td>57</td>
<td>18855</td>
<td>150840</td>
</tr>
<tr>
<td>Dryer – RH Shin</td>
<td>12</td>
<td>18855</td>
<td>226260</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>18855</td>
<td>2149475</td>
</tr>
</tbody>
</table>
4. CONCLUSION

Redesigning the layout of production using SLP algorithms with the help of CRAFT software to minimize the distance of production process, because SLP algorithm and CRAFT software designed by level of importance and closeness of the machine. In the new layout engine area needs as much as 414 box, with a length of 1 box represent is 3.8 meters. So the total area required is 1573.2 m2. While the differences in the material handling distance between the initial layout and the proposed layout is 5 meters or a decline of 2%. In the initial layout, the total material handling distance is 119 meters, whereas the total material handling distance of the proposed layout is 114 meters. With the reduction of the total distance of material handling, then the less the material handling costs of production processes. Material handling costs on the initial layout is Rp 2,243,745, while the material handling costs on the proposed layout is Rp 2,149,470. Difference in material handling costs on both the layout is Rp 94,275 or a decline of 2%.

REFERENCES

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
UNIVERSITAS TRUNOJOYO MADURA
Jl. Raya Telang, PO.Box, 2 Kamal, Bangkalan – Madura
Telp : (031) 3011146, Fax. (031) 3011506
Laman : www.trunojoyo.ac.id

SURAT TUGAS
Nomor: 312/UN46/LL/2014

Rektor dengan ini menugaskan:
Nama : Dr. Rachmad Hidayat
NIP : 197406192006041002
Pangkat/golongan : Penata Tk.I/IIId
Jabatan : Dekan Fakultas Teknik

Demikian surat tugas ini dibuat untuk dilaksanakan dengan penuh tanggung jawab.

9 Maret 2014

[Signature]

Dr. Ir. H. Ariffen, MS
NIP 195005044980031024
Peran Teknik Industri dalam Pemberdayaan Industri Kecil dan Menengah untuk mendukung Ketahanan dan Kemandirian Perekonomian Bangsa

Rachmad Hidayat

Pemakalah
dalam acara
Industrial Engineering Conference (IEC) 2014
diselenggarakan oleh
Program Studi Teknik Industri - Fakultas Teknologi Industri
UPN "Veteran" Yogyakarta
Yogyakarta, 6 Desember 2014

Dekan Fakultas Teknologi Industri

Ir. Tukup Manopo, M.T., Ph.D.
NIP. 195605311980031001